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ABSTRACT

Recent technological advances underpinned by high throughput sequencing have
given new insights into the three-dimensional structure of mammalian genomes.
Chromatin conformation assays have been the critical development in this area,
particularly the Hi-C method which ascertains genome-wide patterns of intra and
inter-chromosomal contacts. However many open questions remain concerning the
functional relevance of such higher order structure, the extent to which it varies, and
how it relates to other features of the genomic and epigenomic landscape.

Current knowledge of nuclear architecture describes a hierarchical organisation
ranging from small loops between individual loci, to megabase-sized self-interacting
topological domains (TADs), encompassed within large multimegabase chromosome
compartments. In parallel with the discovery of these strata, the ENCODE project has
generated vast amounts of data through ChIP-seq, RNA-seq and other assays applied
to a wide variety of cell types, forming a comprehensive bioinformatics resource.

In this work we combine Hi-C datasets describing physical genomic contacts with
a large and diverse array of chromatin features derived at a much finer scale in the
same mammalian cell types. These features include levels of bound transcription
factors, histone modifications and expression data. These data are then integrated
in a statistically rigorous way, through a predictive modelling framework from the
machine learning field. These studies were extended, within a collaborative project, to
encompass a dataset of matched Hi-C and expression data collected over a murine
neural differentiation timecourse.

We compare higher order chromatin organisation across a variety of human cell
types and find pervasive conservation of chromatin organisation at multiple scales.
We also identify structurally variable regions between cell types, that are rich in active
enhancers and contain loci of known cell-type specific function. We show that broad
aspects of higher order chromatin organisation, such as nuclear compartment domains,
can be accurately predicted in a variety of human cell types, using models based upon
underlying chromatin features. We dissect these quantitative models and find them
to be generalisable to novel cell types, presumably reflecting fundamental biological
rules linking compartments with key activating and repressive signals. These models
describe the strong interconnectedness between locus-level patterns of local histone
modifications and bound factors, on the order of hundreds or thousands of basepairs,
with much broader compartmentalisation of large, multi-megabase chromosomal
regions.
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abstract

Finally, boundary regions are investigated in terms of chromatin features and
co-localisation with other known nuclear structures, such as association with the
nuclear lamina. We find boundary complexity to vary between cell types and link
TAD aggregations to previously described lamina-associated domains, as well as
exploring the concept of meta-boundaries that span multiple levels of organisation.
Together these analyses lend quantitative evidence to a model of higher order genome
organisation that is largely stable between cell types, but can selectively vary locally,
based on the activation or repression of key loci.
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LAY SUMMARY

Each human cell contains DNA that would extend for two metres if fully straightened.
Instead, this same length of DNA is highly compacted into micrometre-sized cell
nuclei. Recently experimental methods such as Hi-C have been developed which allow
the inspection of this folded state, generating counts of how frequently chromosomal
regions are interacting with each other. These counts can be statistically analysed to
reveal different levels of structures, including loops between two distant locations,
knot-like domains of self-interacting regions, and broad stretches of mostly active or
inactive regions.

In this work, we bring together Hi-C datasets from several different publications
and combine these with a large number of chromatin datasets that quantify, for
example, levels different DNA-binding proteins as well as modifications to DNA
packing histone proteins. We used these datasets to build predictive models of active
and inactive states across each human chromosome in three different cell types, and
achieved high predictive accuracy. We then compare and contrast these models, and
use them to identify the key features which define active and inactive states.

We also analyse the boundaries between domains and compare these across cell
types. We find the domains themselves are highly conserved between cell types, but
observe different chromatin features marking domain boundaries. Further collabora-
tive work involved analysis of boundaries from Hi-C data taken over successive time
points, where boundary markings were found to persist as cells differentiate from
stem cells.

Overall we find the three-dimensional DNA structures within cells are highly similar
even between human embryonic stem cells and cells derived from blood. Where there
are differences, these areas tend to highlight biological activity specific to that cell
type.
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1 INTRODUCT ION

1.1 genome organisation

It is often stated that the DNA within each human cell would extend for two metres
fully extended. Instead that same length of DNA packs into a cell nucleus with a
diameter on the order of micrometers (µm). This is achieved through a complex
organisational hierarchy, ranging from how chromosomes are arranged in the nucleus
in territories, to chromatin interactions with the nucleolus or nuclear periphery, down
to how DNA is wrapped around nucleosomes (for recent reviews, see 1,2). While the
biophysics of the latter level of organisation may be well understood, more broadly
there is still much to learn about the guiding principles and functional importance of
higher order chromatin organisation.

This introductory section will describe the current state-of-the-art in chromosome
conformation capture experimental methods, as well as criticisms and considerations
when interpreting these data, and discuss what is currently understood or theorised
about the structure and function of higher order genome organisation. We compare
competing models which attempt to recapitulate mechanisms of chromatin folding,
and also explore some of the best understood organisational strata in mammalian
higher order genome organisation.

1.1.1 C-methods and Hi-C

Classical studies of chromosome conformation relied on microscopy techniques to
visualise nuclear architecture, most commonly fluorescence in situ hybridisation
(FISH). These techniques led to the discovery of “chromosome territories”, regions
of the nucleus wherein distinct chromosomes were thought to occupy, and more
broadly identified the non-random arrangement of loci in three-dimensional space. [3,4]

Finer details of chromatin organisation, such as the proposed 30 nm fibre, were
also introduced through microscopy-based techniques. Techniques such as FISH are
powerful for precise inspection of single genes, but are low-throughput and offer
limited resolution. [3]

With the advent of DNA sequencing technology, new experimental methods
emerged. Chromosome conformation capture (3C), introduced by Dekker et al. [5] was
the first sequencing-based method of assaying nuclear architecture. The 3C method
uses formaldehyde to cross-link nuclear proteins in place, trapping genomic regions
that were physically co-located through bound proteins, then a frequent-cutter restric-
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tion enzyme shears the sample into DNA fragments. Next, under dilute conditions,
these fragments are ligated together. The dilute conditions favour ligations between
fixed fragments, with the aim of generating hybrid fragments from genomic regions
which were close together in the original preparation. Cross-linking can then be
reversed and, in the case of the original 3C method, measured by quantitative PCR
using pre-designed primers for the fragments of interest. The end result is a rela-
tive measure of interaction frequency between any two regions of interest, in theory
directly proportional to their distance in three-dimensional space.

Rapid advancements in sequencing technology allowed the original 3C method to be
further developed, first through microarrays, then using high-throughput sequencing.
Two protocols were proposed for a 3C-inspired one-to-many assay [6,7] (both named
4C), whereby interactions were measured for a specific “viewpoint” fragment against
all other restriction fragments genome-wide. The same year a many-to-many assay
(5C) allowed measurements for all restriction fragments within a specified region. [8]

The final stage in the evolution of the 3C method was an all-versus-all assay, capable
of assaying pairwise interaction frequencies between all restriction fragments of a
genome. Such an assay was published by Lieberman Aiden et al. [9] and named Hi-C
(Fig. 1). The Hi-C method added biotin tagging to pull-down only ligated fragments
for sequencing. At the time of the assay’s publication, resolution of Hi-C data for
analysis was limited by sequencing depth—of particular concern given the enormous
pairwise interaction space between all restriction fragments produced by a 6-cutter
enzyme—but the falling costs of sequencing and proven utility of the assay meant
subsequent Hi-C papers incrementally upped their sequencing depth, culminating at
the time of writing to the point where analyses are starting to be performed at the
level of individual restriction fragments, genome-wide. [10–13]

1.1.2 Hi-C variants

The interaction maps produced by Hi-C were found to contain several inherent biases.
Restriction fragment properties, such as their length, GC content and mappability, were
confounding interaction frequency estimates and therefore required normalisation
before subsequent analysis. [14,15] A range of statistical techniques were developed
to correct for these latent variables, [16–19] while experimentalists instead looked to
improve on the experimental procedure itself.

Tethered chromosome capture (TCC) [20] was the first attempt to increase the signal to
noise ratio of Hi-C contacts. In this method, ligations take place on a fixed surface, with
the aim of preventing spurious ligations between fragments in solution which were not
cross-linked. Kalhor et al. [20] reported a large decrease in observed interchromosomal
contacts in their tethered library, suggesting many of those originally observed were
caused by spurious ligation of non-crosslinked fragments.
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1.1 genome organisation

Figure 1: Steps in the Hi-C assay. Schematic of the Hi-C experimental procedure as described
in Lieberman-Aiden et al. [9]

In situ Hi-C is another, more recent refinement of the Hi-C method from some of
those who developed the original Hi-C method. [13] In contrast to TCC, fixation and
ligation now happen in place within intact cell nuclei. The observed improvements
with this in situ procedure, however, are similar: interactions are assayed with greatly
reduced noise and again many fewer trans contacts are reported. [21]

Hi-C and the variants introduced thus far are population-level assays, reporting
summed interaction counts over a cell population. As well as building population-
averaged models of genome structure, it is also of interest to probe cell-to-cell variabil-
ity through single-cell approaches. For instance, it has been estimated that long-range
contacts identified with C-methods may occur in as few as 10% of cells at any one
time. [4]

In the first single-cell Hi-C study, Nagano et al. [22] aimed to explore this cell-to-cell
variability by performing the Hi-C assay on single, hand-selected nuclei. An obvious
limitation of this Hi-C variant is that a single restriction fragment can ligate to at most
one other fragment per experiment, meaning even if 100% yield were to be achieved,
any n× n restriction fragment interaction matrix could have at most n

2 nonzero entries;
in practice, the realised yield of this first single cell Hi-C experiment was just 2.5%. [22]

Nevertheless, single-cell Hi-C was able to reproduce findings from population-based
(or “ensemble”) Hi-C, such as preferential interactions between active domains, and
also was able to dissect trans interactions, suggesting high cell-to-cell variability leads
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to their relatively uniform appearance in normal Hi-C interaction maps. [22] When
combined with the observations of TCC and in situ Hi-C, which gave evidence that
interchromosomal contacts were disproportionately the result of spurious ligation, [20]

the functional significance of these trans interactions seems at best unclear in the
general case.

Capture-C is an altogether different Hi-C variant which attempts to address the
resolution problems associated with the standard assay by enriching for functional
interactions using a priori selection for loci of interest. [23] Indeed, a suggestion in
the original Hi-C paper was that resolution could be improved by either increased
sequencing or using hybrid capture. [9] Since the release of Capture-C, more Hi-C
variants with a target enrichment step have been developed, including Capture Hi-C
(CHi-C) [24] and HiCap. [25] These methods have been applied to genome-wide target
sets (e.g. CHi-C assayed 22, 000 human promoters [26]) and so it could be said that
they are to Hi-C as exome-capture is to whole-genome sequencing, in the contexts of
chromosome conformation capture and variant discovery respectively.

1.1.3 Chromosome compartments

In the paper describing the Hi-C technique, Lieberman-Aiden et al. [9] described
low-resolution structures they name “A” and “B” nuclear compartments. These are
genomic regions with a median size of around 5 megabases which showed properties
typical of euchromatin and heterochromatin, respectively. A compartments were
observed through 3D-FISH to be centrally-positioned in the nucleus and ChIP-seq
data showed several hallmarks of transcriptional activity. B compartments, conversely,
were heterochromatic and often lamina-associated regions, with little transcription
and repressive histone modifications such as H3k9me3. [3,9]

These A and B compartments were identified through a continuous principle
component eigenvector profile, derived from normalised Hi-C contact matrices [9] (Fig.
2). This approach can be intuitively understood as formulated by Lajoie et al. [27]:

1. A tartan pattern on normalised Hi-C matrices indicates two preferentially-
contacting and exclusive compartments (Fig. 2).

2. Assume a function (c) that maps a given genomic bin to its compartment, using
a positive number for compartment A and a negative for compartment B.

3. The interaction frequency between bins i and j is thus c(i) · c(j). (Note that this
rule alone is sufficient to generate a tartan pattern: if i and j are in the same
compartment, the product will be positive, and for compartments of opposing
type, negative. [27])
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1.1 genome organisation

Figure 2: Derivation of A/B an compartment profile from Hi-C data. Intrachromosomal
observed interaction frequencies (O) are averaged along super-diagonals to give a distance-
normalised expected matrix (E). The Pearson correlation of the O/E matrix then can undergo
eigenvector expansion; in most cases eigenvector v with the largest eigenvalue, λ, then reflects
A/B compartmentalisation. [9] Matrices are coloured from blue (lowest values), through yellow,
to highest values in red.
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4. Our symmetric Hi-C matrix thus contains c(i)c(j) and in this formulation,
principle components analysis is finding the basis that minimises the mean-
squared error between c(i)c(j) and c(i).

Importantly, this measure holds more information than a simple two-state classifica-
tion, rather the continuous values can be interpreted as relative levels of compartment
identity, hence degrees of compaction or activity. [16,17]

1.1.4 Topologically associating domains

The falling cost of high-throughput sequencing has enabled increasingly deep se-
quencing of Hi-C experiments. Sequencing depth is the main resolution-limiting
resource for this assay; in order to increase the analysis resolution while maintaining
the same level of coverage requires an exponential increase in the total amount of
sequencing. [9,28] Nevertheless such deep sequencing has recently been achieved in a
handful of landmark studies.

In experiments totalling around two billion total sequencing reads, Dixon et al. [10]

produced Hi-C contact maps in human and mouse cell lines at 40 kb resolution.
At the same time, Nora et al. [29] published an even higher-resolution 5C dataset
covering a 4.5 Mb region of the mouse X chromosome. In both of these studies, the
authors uncover what are now known as ”topologically associating domains” (or
TADs), observable as off-diagonal blocks in a contact map which exhibit higher-than-
expected self-interaction frequency. With a mean size of around 1 Mb, TADs were
recognised as a novel layer of higher order chromatin organisation at a level below
the larger A/B compartments (Section 1.1.3). TADs have since been reported in a
variety of metazoan organisms including dog, [30] Drosophila [31,32] and C. elegans [33] yet
comparable structures are not found in higher plants such as Arabidopsis [34,35] or in
yeast. [36,37]

Dixon et al. [10] defined a TAD calling algorithm based on the directional bias of
a genomic region’s contacts, and used a hidden Markov model to infer blocks of
strongly up- or downstream bias, reasoning that domain boundaries are present
when a strongly upstream biased region is adjacent to a region of opposite bias (Fig.
3). These boundaries themselves were investigated and found to show suggestive
functional enrichments for DNA binding proteins including CTCF, long thought
to act as an insulator of chromatin state (Section 1.2.3). Deletion of a CTCF site
has been found to disrupt the corresponding TAD border, while removal of some
other enriched factors had little effect. [29,38,39] Dixon et al. [10] also performed some
comparative analysis, reporting large and significant overlap of domain boundary
positions both within species and between human and mouse.

Since then, several studies have investigated the functional implications of TADs.
A proposed biological explanation is that TADs delimit functional contacts, such as
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Figure 3: Dixon et al. pipeline for calling topologically associating domains. First a direc-
tionality index (DI) is calculated for each bin based on the ratio of upstream:downstream
contacts. Secondly a hidden Markov model (HMM) is used to infer the most likely state
sequence that emitted the DI variable. Finally a simple rule is applied whereby a run of
high-confidence upstream-biased state calls marks the end of a domain. New domains begin
with any subsequent downstream-biased state. Gaps between TAD calls can be observed and
these are labelled border regions up to a size threshold of 400 kb, whereafter those regions are
unclassified. [10] Additional details are given in Methods 2.1.5.

those between enhancers and promoters, and so could inhibit spurious contacts with
other nearby genetic elements. [2,40] Moreover, hormonal treatment of human breast
cancer cells reported coordinated expression responses within TADs, suggesting they
also function as domains of transcriptional co-regulation or ”regulons”. [41] However
the size of TADs means they often span multiple genes, commonly with unrelated
functions, so it seems unlikely they can function as regulons in the general case. [1]

At the time of writing, the functional significance of TADs is the subject of ongoing
debate within the chromatin biology field.

1.1.5 Other proposed structures

Since the discovery of TADs, multiple publications have proposed either complemen-
tary or altogether different classes of chromatin domains. For example, Filippova
et al. [42] developed a tuneable algorithm which identifies ”alternative topological
domains”. The authors use dynamic programming to search for an optimal set of
non-overlapping boundary pairs that maximise intra-domain contacts. The algorithm
includes a length scaling factor (γ) which is used to penalise domain size; by varying
γ the authors define a subset of ”multiscale domains” of heightened persistence
across resolutions. [42] These multiscale domains were found to be smaller, on average,
than those previously reported by Dixon et al. [10], even when applied to the same
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Hi-C experimental data (with a mean size of 200 kb as opposed to ≈ 1 Mb). How-
ever the domains of Filippova et al. [42] show increased intra-domain contacts and
stronger boundary enrichments relative to previously-described TADs, indicating this
algorithm may generate a more accurate representation of topological domains in
mammalian genome organisation. Intriguingly, this study also reports quantitative
evidence for hierarchical genome organisation, finding that those domains called at
large γ will then combine into larger meta-domains as the γ penalty decreases. [42]

A study of Drosophila embryonic cell chromosomes found a similarly hierarchical
organisation of physical domains, and also was able to relate these to “epigenomic
domains” which exhibited specific sets of enrichment signatures representing active,
null, polycomb-associated and telomeric regions. [31] This study provided evidence for
the first time that contact domains are linked with average epigenomic enrichments.

Recent high-resolution studies have been able to resolve ever-smaller levels of
sub-structure. Rao et al. [13] refined the concept of chromosome compartments to
”sub-compartments”, dividing simple A/B divisions into a total of 5 subtypes. The
authors were also able to identify ”contact domains” of median size 185 kb, many of
which were associated with identifiable individual looping events (Section 1.2.3). [13]

This domain size is close to those of Filippova et al. [42] (described above) and the
authors here suggest that previously-observed large TADs may be the result of
insufficient sequencing; that is, not all boundaries could be detected using 40 kb binned
contact maps thus multiple contact domains were unintentionally combined into large
domains. Additionally, these sub-compartment types exhibit average epigenomic
enrichments along the lines of those reported in Drosophila by Sexton et al. [31] and so
potentially provide an overarching concept that connects the above-mentioned TADs,
alternative domains and epigenomic domains.

1.2 models of chromatin folding

Theoretical mechanistic models of chromatin folding such as the “strings and binders
switch” model [43] and the “fractal globule” model [9,44,45] have both produced simu-
lated data that reflects empirical C-method observations and thus potentially describe
the polymer dynamics of chromatin folding.

1.2.1 Fractal globule

Lieberman-Aiden et al. [9] tested a number of theoretical models of genome folding
to see which best explained the observed power-law scaling between distance and
interaction frequency (IF = 1

dist−α where α ≈ 1.08). The authors sought to distinguish
between two models of genome organisation: the previously-described ”fractal glob-
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y
Figure 4: Comparison of theoretical models of chromatin folding. Two theoretical models
of chromatin folding are shown simulated along a 2D polymer, coloured from start to finish
as blue–green–red. An equilibrium globule is represented by a Hamiltonian path through a
grid network (left) and is compared to a fractal globule model, here represented by a Hilbert
curve (right).

ule” [45,46] and a less-structured ”equilibrium globule” (Fig. 4). The study found that a
theoretical fractal globule, embodying scale-independent and self-similar aggregate
folding, showed a better fit to the observed data than an equilibrium globule null
model where simulated polymer folding was allowed to proceed unchecked.

The fractal globule model was noted for its appealing functional properties. Under
this model, for example, the polymer folds are knot-free hence could facilitate local
dynamics of repression and activation without wider disruption. [44] Despite this
appeal, the authors were careful to state that while their simulations show good
agreement with observed data, this does not preclude other organisational models
from having similar or greater explanatory power. [9]

1.2.2 Strings and binders switch

Subsequent modelling techniques integrated known biological phenomena as well as
polymer models. This idea formed the basis for Barbieri et al. [43] to develop the “strings
and binders switch” (SBS) model, where the authors simulated polymer folding in the
presence of DNA binding factors, such as the known genome architectural protein
CTCF (Section 1.2.3). The SBS model was developed in an attempt to consolidate
global Hi-C measures of contact scaling with those values from C-based experiments
on smaller regions and FISH studies, which report a range of scaling parameters.
The authors also explore the different observed values of α (the coefficient describing
the power law relationship between interaction frequency and genomic distance,
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Figure 5: Levels of higher order chromatin organisation. Cartoon showing how functional
contacts, such as loops between bound CTCF insulators (Section 1.2.3), occur within TADs
(Section 1.1.4) which in turn are found within A or B compartments (Section 1.1.3).

introduced in the previous section) across cell lines and even chromosomes, and find
that their mechanistic model can explain each case using variable concentrations of
binders which cause phase-switching between accessible and compacted chromatin,
with a fractal globule organisation existing at the phase transition boundary. [43]

This SBS model achieves broad explanatory power for a range of observed power
law coefficients (α), and does so from simple underpinnings, but critics point out that
simulations were performed on a polymer composed of just 512 monomers so may
not be broadly applicable. [17]

1.2.3 Looping and CTCF

Examples have long been known of specific enhancer elements that are brought into
close proximity with the promoter(s) they are regulating; under this model, these
contacts form a ”loop” structure between two potentially distal loci [47,48] (Fig. 5). A
model region, the β-globin locus and its locus control region (LCR) located 40-80 kb
away, [17] has been studied since the early 1980s, [49–52] and is an interesting example of
a well-characterised looping event. Current knowledge suggests the β-globin locus
forms loops with the multiple distal cis-enhancer elements that make up the LCR,
forming an active chromatin hub (ACH). [53] Within such a hub, regulatory signals
could be efficiently integrated to dictate the overall activity of the target locus. [1,3] It is
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now thought that the majority of active promoters are engaged with multiple, often
cell type specific, regulatory looping events. [12,54]

A notable component of many long-range looping events is the CCCTC-binding
transcription factor (CTCF), [55–57] already mentioned as a component of TAD bound-
aries (Section 1.1.4) and as a proposed looping factor in the SBS model (Section 1.2.2).
CTCF is strongly conserved in higher eukaryotes, [58] ubiquitously expressed and
embryonic lethal, but it is not tied to a single biological function — instead CTCF
has been described as a ”multivalent factor”, [56] capable of regulating transcription,
imprinting, dosage-compensation and acting as an insulator.

In the context of genome organisation, CTCF is of interest for its role of anchoring
interactions between loci, forming loops. Experimental evidence has shown that inter-
actions between CTCF sites stabilise the aforementioned loops linking the β-globin
locus with its distal LCR. [59] This looping role, potentially undertaken in combination
with other architectural proteins such as Mediator and cohesin, [48,60] can explain its
previously-identified insulator behaviour: CTCF can block the spread of heterochro-
matin and contacts between enhancers and promoter through topological constraints
by forming loops. [56] It must be said, however, that the functional significance of
CTCF-mediated loops, and indeed the role of CTCF in even well-studied systems,
remains only partially understood. [61]

A recent Hi-C study by Rao et al. [13] again brought CTCF and looping to the fore
of chromatin conformation research. This study identified around 10, 000 individual
looping events in the human genome, almost all linking loci over distances of less
than 2 Mb, and around 30% connecting predicted enhancer and promoter chromatin
states. Rao et al. [13] also report a 6-fold overall increase in expression when comparing
those promoters participating in a looping event with those that do not. Furthermore,
86% of these loops involved CTCF bound regions, with roughly the same overlapping
proportion involving cohesin subunits RAD21 and SMC3. The authors thus propose
that a CTCF-binding motif can act as an ”anchor”, which can then be bound by
a transitive complex of other architectural proteins. [13] A majority of these loops
(65%) also demarcated a topological domain, and at much higher resolution than
previously observed (Section 1.1.4). Another striking finding of this research was
that loops almost always occur in between bound CTCF motifs with a convergent
orientation, [13] though questions remain over why this should be the case, especially
when considering the interactions of a flexible polymer in 3-D solution. [62]

While the evidence linking CTCF and genome architecture is substantial, it should
be noted that from a global perspective as few as 15% of all CTCF ChIP-seq peaks
were found to occur at TAD boundaries in human and mouse cells [10] and similarly
around 25% of TAD borders had no observable CTCF binding. [40] These facts indicate
that CTCF alone is neither necessary nor sufficient for the formation of higher order
chromatin structures such as TADs. Indeed, the degree of insulation at a given
genomic site was recently reported to correlate with the degree of co-binding of a
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range of architectural proteins including not only CTCF but cohesin, condensin and
the transcription complex TFIIIC, among others. [63]

1.3 criticisms of c-methods

C-methods are a relatively new and rapidly developing set of assays, especially
compared to long-standing microscopy techniques which have for decades been
used to visualise chromosome conformation. In this section, we discuss some of the
limitations and issues with applying or interpreting the results of C-methods.

1.3.1 Cell populations

As previously mentioned (Section 1.1.2), the Hi-C assay typically takes place using
chromatin from a cell population (though proof-of-concept single-cell experiments
have been reported [22]). An obvious consideration, then, is that interaction counts
reflect the average over a large number of cells, often including unsynchronised
populations at different stages of the cell cycle. [2] Given evidence that, while the
interphase chromosomes exhibit cell-to-cell variability, the mitotic state is much more
static, [64,65] one might expect even a small proportion of dividing cells to add a
detectable amount of bias to averaged genome-wide contact maps.

1.3.2 Ploidy

A more esoteric consideration with C-methods data is that organisms under study are
typically diploid, while maps of chromosome organisation are commonly collapsed
onto a haploid pseudo-genome. Haplotype conformation can be delineated from C-
methods data in a variety of ways, such as using haploid cell lines (e.g. 13) or through
haplotype phasing using detectable sequence differences with deep sequencing, or
by focusing on an allosomal region (e.g. 66). An altogether different and inventive
solution is to use the inherent proximity-ligation information produced by C-methods
to discriminate haplotypes, [11] an idea since extended to deconvolution problems in
metagenomics. [67,68]

1.3.3 Resolution

The resolution of a Hi-C experiment has a hard-limit imposed by the choice of
restriction enzyme. For example, the commonly-used HindIII enzyme is a six-cutter
that recognises the motif AAGCTT and cuts approximately every 4 kb, on average. [3]

This results in on the order of 10 million restriction fragments with a total pairwise
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interaction space of 1012. [27] The depth of sequencing required to cover this interaction
space is cost-prohibitive, so in practice analysis takes place with data aggregated into
bins of either fixed length or fixed number of restriction fragments.

More recent studies have switched to using a four-cutter restriction enzyme, for
example MboI, [13] which increases this upper-bound on resolution to the order of
hundreds of basepairs (e.g. theoretical mean fragment size of 422 bp in mouse [25]),
but again ultra deep-sequencing is required to realise such resolutions during analysis.
A downside of using more frequent restriction enzymes is the potential side-effect of
promoting more non-specific ligations by increasing the concentration of fragments in
solution. [13]

Realistically and in most instances, an experimental design may either target high-
resolution interactions through targeted 4C or 5C, or low-resolution genome-wide
interactions — but not both.

1.3.4 Biological interpretation

A key consideration with C-methods is that, when accurately stated, the assays are
measuring “the frequency at which sequences are ligated together by formaldehyde
cross-linking”, [69] which is then assumed to be a proxy for physical distance within
the nucleus. This is a marked difference from aforementioned FISH methods, where
the physical distance is observed directly, albeit through the addition of non-native
probes. So strong is the assumption that this proxy is accurate, that methods have
been developed that use a known FISH distance to then calibrate genome-wide Hi-
C distances, [70] however it need not be the case that population-level interaction
frequencies capture physical distance. [27] Consider, for example, a tight enhancer–
promoter interaction occurring in 50% of cells, but not at all in the other half. In
this scenario, the two loci would have an intermediate interaction frequency overall,
which is then converted to a distance measure that reflects the realities of neither cell
sub-population. For similar reasons, the transience of an interaction cannot be directly
inferred from its interaction frequencies: a weak interaction frequency may be the
result of either the same fleeting contact in many cells, or stable contacts in only a
subset of cells. [27]

When interpreting C-methods data it should also be kept in mind that even verifiable
contacts are by no-means functional. To elaborate, C-methods may find two regions
to be strongly co-localised, but an understanding of the region may explain their co-
localisation to be caused by mutual interaction with the nuclear lamina or nucleolus,
for example, rather than any specific functional relationship between the two loci. [17]

In addition, a functional enhancer–promoter interaction will necessarily constrain the
contacts of other nearby regions, potentially causing highly-reproducible ”bystander
interactions” [17] that are nevertheless uninteresting from a functional perspective.
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1.3.5 Other considerations

An additional and separate issue identified with C-methods, specifically 3C in this
instance, emerges from reports that the observed ligation frequency is as low as 1% of
expected values in a model system, [71] potentially magnifying the relative influence of
noise and artefacts.

1.4 machine learning in genomics

Machine learning offers a powerful framework for understanding complex datasets,
such as those produced in large-scale genomics studies. Problems in the field such as
gene prediction and inferring regulatory networks can be approached by employing
a learning algorithm, either in a supervised way based on a known truth set, or
through unsupervised methods aimed at pattern detection or clustering (for reviews
see 72,73). If a successful predictive model can be built, it can then be dissected to
explore statistical rules which may impart novel biological insight. As a toy example,
learning a highly-accurate model of enhancer prediction could itself identify novel
epigenetic marks indicative of enhancers, generating testable hypotheses about how
enhancers are activated.

In this section, we introduce recent and high-profile machine learning applications
in the context of the ENCODE consortium, and give examples of how their datasets
have empowered research groups worldwide to tackle complex biological questions
through a variety of machine learning approaches.

1.4.1 ENCODE

The Encyclopaedia of DNA Elements (ENCODE) is a consortium project started over
a decade ago with the ambitious aim of comprehensively cataloguing all functional
elements in the human genome. [74–76] This project involves huge amounts of data
production from a diverse array of experimental methods, such as: ChIP-seq, DNase-
seq, RNA-seq, CAGE, DNase-seq and ChiA-PET. [77] Importantly these methods were
applied to a range of human cell types, including many well-studied immortalised cell
lines as well as primary cells and tissues, and according to standardised experimental
methods [78] coupled with statistical quality control [76,79,80] to ensure data is comparable
between different data producers and is of consistently-high accuracy. ENCODE spin-
off projects have also aimed to build similar genomics resources for mouse [81] and,
more recently, Drosophila and C. elegans. [82] Together these data sources offer an
unparalleled resource for comparative and within-species genomics research, and as
such have been used in at least 1200 publications to date. [83]
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Data generated by ENCODE consortium members also has a proven utility in
modelling techniques based on machine learning. Notably two ENCODE-associated
groups have released models which classify the human genome into discrete ”chro-
matin states”, such as actively transcribed regions or gene promoters. The first, named
SegWay, trained a dynamic Bayesian network on 31 ENCODE-generated input vari-
ables and called an unsupervised 25-state genome segmentation in the ENCODE
pilot region. [84] Independently another chromatin state predictor named ChromHMM

was developed. [85,86] As the name suggests, this approach instead used multivariate
hidden Markov models (HMMs) and has the capability to learn a single generative
model over multiple cell types. Original runs of the model called 51 chromatin states
using over 40 input features, [87] but more recently these two methods were combined
to call a consensus set of just 7 chromatin states. [88] Since their publication, a study was
able to experimentally validate many of these state predictions. [89] This discretisation
of the chromatin landscape greatly helps interpretability, at the cost of simplifying the
complex underlying data series, and is used for this reason later in this work (Section
3.6.1).

More broadly, ENCODE data has been used by external researchers to generate
input variables for machine learning-based predictive models which describe tran-
scriptional output, [90] gene regulation, [91] cell cycle-associated genes [92] and enhancer
identification [93] to name but a few. One such study in particular, that of Dong et al. [94],
is reproduced and further analysed in this work (Section 4.2) and is used as a template
for our own machine learning framework applied in the context of higher order
chromatin structure (Chapter 4). We also make use of ENCODE data in other chapters
(e.g. Chapter 5) due to its comprehensive coverage of model human cell types and
stringent data production guidelines referenced above.

1.5 aims

In the broadest terms, the aims of this work are to investigate the relationship between
structure and function of the genome. In particular, we aim to answer the following
questions:

1. How does higher order chromatin structure compare across human cell types?

2. Can we predict higher order chromatin structure from locus-level features?

3. How do the characteristics of boundaries demarcating higher order domains
vary between cell types and domain classes?

In an attempt to address these questions, we will bring together the huge volumes
of data generated by the ENCODE consortium (Section 1.4.1) and employ machine
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learning techniques and other statistical analyses to explore how these locus-level
features relate to higher order chromatin structure.
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2 METHODS

2.1 hi-c data

2.1.1 Mapping

Raw Hi-C reads were downloaded from published datasets (Table 1) through the Gene
Expression Omnibus (GEO) [95] or the Short Read Archive (SRA) [96] with identifiers:
GSE35156 (H1 hESC), GSE18199 (K562) and SRX030113 (GM12878). These paired
reads were mapped independently to the human reference genome (build hg19 /
GRCh37.

Mapping was performed using the hiclib python library [16] and bowtie2 [97] with
the --very-sensitive flag. An iterative mapping approach was used to maximise
the number of aligning fragments. [16] Each fragment end was aligned first using short
terminal sub-sequences. Those unmapped or with ambiguous mapping were then
taken forward into the next iteration and extended until the entire fragment end
had been aligned. Those remaining pairs with one or more unmapped ends were
discarded. This approach is designed to maximise uniquely-alignable fragment ends,
while avoiding mismappings from reads that cross a restriction fragment junction. [27]

2.1.2 Filtering

After mapping, interactions are first aggregated into restriction fragments then by
regular binning at various resolutions (particularly 40 kb, 100 kb and 1 Mb). Several
filters were applied at this stage, with the following cases removed: [16,27]

• Reads directly adjacent to a restriction enzyme site (within 5 bp)

• Identical read pairs (presumed PCR duplicates)

• Very large restriction fragments (> 100 kb) which are likely from a repetitive or
poorly-assembled region

Table 1: Public Hi-C data used in this work.
Cell line Total reads Accession Citation
Gm12878 31×106 SRX030113 20

H1 hESC 331×106 GSE35156 10

K562 36×106 GSE18199 9
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• Extremely over-represented fragments (top .05%) which may throw-off the
subsequent derivation of principle component eigenvectors

2.1.3 Correction

Iterative correction and eigenvector expansion (ICE) is an approach to normalisation
and processing Hi-C data and is implemented as part of the the hiclib library written
in python. [16] The iterative correction algorithm performs matrix balancing with the
aim of generating a doubly stochastic matrix from raw interaction counts. [27] That is,
such that symmetric matrix A has both row and columns of equal sum. In practice,
this effectively enforces ”equal visibility” of each fragment, correcting for previously-
described biases in interaction recovery such as GC-content and fragment length [14]

but without explicitly modelling these latent variables.

This correction procedure thus converts actual interaction counts into normalised
interaction frequencies (IF), and to relative rather than absolute quantities. Scaling of
IFs permits comparison of Hi-C experiments with very different sequencing depths
(as is the case in this work, see Table 1). Despite differences in the levels of sequencing,
otherwise the experimental methods underlying the produced Hi-C data were similar:
the HindIII restriction enzyme was used in each case and the Hi-C protocol was
largely unchanged (for example, we did not consider data from Hi-C variants such as
tethered conformation capture [20] and in-situ Hi-C [13]).

2.1.4 Eigenvector calculation

Additional functionality provided by ICE is the eigenvector expansion of normalised
contact maps. Eigenvectors from observed/expected matrices were chosen for consis-
tency with Lieberman Aiden et al., [9] as opposed to the related eigenvectors calculated
in Imakaev et al. [16] from the corrected maps alone. Briefly, observed contacts (O)
are divided by an expected matrix (E) which is generated by averaging the super-
and sub-diagonals of the O matrix. That is, the E matrix gives the expected value of
interactions at a given distance, hence the O/E matrix is a normalised contact map
without the distance decay seen in raw Hi-C contact matrices. Examples of these maps
are shown in Figure 2 (Section 1.1.3).

Importantly, for the eigenvector expansion step the first two principle components
(PCs) were calculated, and that with the highest absolute Spearman correlation with
GC content is taken to reflect A/B compartmentalisation. PC eigenvectors were
then orientated to positively correlate with GC, ensuring positive values reflected
A compartments and negative values B compartments. Another subtlety is the
calculation of eigenvectors per chromosome arm as opposed to per chromosome, this
prevents issues with some meta- and submetacentric chromosomes where the first
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principle component indicated chromosome arms. [9,16] Eigenvector expansion was
performed on both 1 Mb and 100 kb matrices, below these resolutions results became
less stable, and besides it has been shown that eigenvectors at higher resolution —
when they do indeed capture A/B compartmentalisation — add little, if any, additional
information. [98]

2.1.5 TAD calling

TADs were called using the software provided in Dixon et al. [10] and their recom-
mended parameters. This method is introduced in Section 1.1.4 (see also Fig. 3) but
will be described here in greater detail.

The TAD calling algorithm is a multi-stage process. Firstly, a statistic called the
”directionality index” (DI) is calculated for each bin. [10] The equation for calculating
the DI of a given bin is shown (Eqn. 1), where U represents the sum of reads mapped
up to 2 Mb upstream of a given 40 kb bin, and D likewise for downstream contacts.
Here E is the expected number of downstream or upstream contacts (equal under the
null hypothesis), hence is E = U+D

2 .

DI =
(

U − D
|U − D|

)(
(D− E)2

E
+

(U − E)2

E

)
(1)

Equation 1 can be intuitively understood as first determining the direction of the
bias (the sign is given by U−D

|U−D| ) and then calculating the extent of the bias (with
(D−E)2

E + (U−E)2

E being akin to a χ2-type statistic). [10]

This DI metric could be used as-is to call domains, as peaks of downstream contacts
culminating in a peak of upstream contacts delineate self-interacting domains. How-
ever, Dixon et al. [10] instead use a hidden Markov model (HMM; Section 2.3.3) in a
manner similar to the strategy we later employed to call compartments (Section 2.5.2).

Here, the DI metric is considered a noisy observation emitted by an unobserved
underlying three-state sequence of upstream, downstream or no- directional contact
bias. [10] The HMM was fitted to each chromosome with between 1 and 20 Gaussian
mixtures allowed per state, however in some cases the expectation-maximisation (EM)
algorithm used to parameterise these hidden states failed to converge; such cases
were ignored. The Akaike information criterion (AIC) was used to select the optimal
number of mixtures (in practice, we found 5–10 were selected).

Finally, given a fully-specified HMM we can calculate the posterior probability of
a given state in a specific bin, using the forward-backward algorithm and given its
observed data and preceding state sequence. Dixon et al. [10] enforce the heuristic
that regions are only classified as downstream- or upstream-biased if the state is
called for two consecutive bins, or if a single bin has an especially high posterior
probability (≥ .99). Domains are called from this state sequence and run from an
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initial downstream-biased bin through to the last in a run of ≥ 2 of upstream biased
states. This procedure was implemented by Dixon et al. [10] in Matlab.

2.2 encode features

Genome-wide ChIP-seq datasets for: 22 DNA binding proteins and 10 histone marks
were made available by the ENCODE consortium [76,79] along with DNase I hypersensi-
tivity and H2A.z occupancy, for each of the Tier 1 ENCODE cell lines used in this work:
H1 hESC, K562 and GM12878. These data were pre-processed using MACSv2

[99] to
produce signal fold-change relative to input chromatin. In most cases a paired input
control was generated by the same laboratory for each ChIP-seq experiment. [79] GC
content was also calculated over the same genomic intervals and used in the featureset
to give 35 total inputs (Table 2).

Table 2: ChIP-seq and other public datasets used in this work.

Histone modifications DNA binding proteins Other

H3K27ac, H3K27me3,
H3K36me3, H3K4me1,
H3K4me2, H3K4me3,
H3K79me2, H3K9ac,

H3K9me3, H4K20me1

ATF3, CEBPB, CHD1,
CHD2, CMYC, CTCF,
EGR1, EZH2, GABP,
JUND, MAX, MXI1,
NRSF, POL2, P300,
RAD21, SIX5, SP1,
TAF1, TBP, YY1,

ZNF143

DNase, GC
content,
H2A.Z

In the analysis of boundaries (Chapter 5), we also use a measure of sequence
conservation in the form of Genomic Evolutionary Rate Profiling (GERP) scores. This
measure uses rejected substitutions to assign conservation scores to each genomic site
based on a multiple alignment of 35 mammalian genomes. [100,101] A rule of thumb is
that a GERP score ' 2 indicates an evolutionarily-constrained site. [102]

2.2.1 Clustering input features

To quantify collinearity of input features, correlation matrices of genome-wide vectors
of input feature measures were hierarchically clustered. The ”significance” of observed
clustering was assessed using sub- and super-sampled bootstrapping, with stable
clusters across sample sizes deemed significant, as implemented in the pvclust R
package. [103]
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Figure 6: Random Forests overview. Random Forests are an ensemble of bagged, de-
correlated classification or regression trees first described by Breiman. [104] These schematics
describe how Random Forests are constructed (upper) as well as how measures of predictive
accuracy and variable importance can be calculated using out-of-bag (OOB) data.

2.3 modelling compartment eigenvectors

2.3.1 Random Forest

Random Forest (RF) regression, [104] was used as implemented in the R package
randomForest. [105] The RF algorithm (Fig. 6) makes use of a collective of regression
trees (size ntrees), each built from a bootstrapped sample of the training set. In
growing each tree, a small number of variables (mtry) is tested at each bifurcation
node, and that which minimises the variance in child node subsets is selected at
an optimal threshold. Having trained a group of trees, these can then be used as
predictive tools by inputting a vector of features to each tree and averaging the output
leaf node values across the forest. RF regression was used as it is known to be one of
the most powerful regression methods developed to date, [106,107] typically providing
low bias and low variance predictions without the need for variable selection. [108,109]

Additionally the RF method is an example of “algorithmic modelling” [110] in that
it makes no assumptions about the underlying data model. Of the few user-facing
parameters, the number of features to test at each node (mtry) was set to n

3 (where
n is the number of input features) and the number of trees in the forest (ntrees) was
chosen as 200. These parameters are known to be insensitive over a broad range of
values, [109,111] as shown in Figure 7.

Variable importance within Random Forest regression models was measured using
mean decrease in accuracy in the out-of-bag (OOB) sample. This represents the
average difference (over the forest) between the accuracy of a tree with permuted
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and unpermuted versions of a given variable (Fig. 6), in units of mean squared error
(MSE). [107,109]

2.3.2 Model performance

The effectiveness of the RF modelling approach used to predict compartment eigen-
vectors (Section 4.4) was measured by four different metrics. Prediction accuracy
was assessed by the Pearson correlation coefficient between the OOB predictions
and observed eigenvectors, and the root mean-squared error (RMSE) of the same
data. Classification error, where predictions were thresholded into A ≥ 0; B < 0,
was also calculated using accuracy (% correct classifications or True Positives) and
area under the receiver operating characteristic (AUROC) curve. Together these give
a comprehensive overview of the model performance, both in terms of regression
accuracy of the continuous eigenvector, and in how that same model could be used to
label discrete chromatin compartments.

For cross-application of cell type specific models, a single Random Forest regression
model was learned from all 1 Mb bins for a given cell type. This was then used to
predict compartment eigenvectors for all bins from each of the other two cell types
(Section 4.4.2).

To test the sensitivity of the models to resolution, we also applied cell-type specific
models learnt at 1 Mb resolution to input features binned at 100 kb (Section 4.5.1). This
was done by training a Random Forest regression model on all available 1 Mb bins
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2.3 modelling compartment eigenvectors

in a given cell type, then applying that model to the prediction of all compartment
eigenvectors derived at 100 kb. Model performance was then assessed as above, with
the caveat that here the test set represents a higher-resolution window onto the original
training set, therefore we might expect this to inflate the measures of generalisation
error.

2.3.3 Hidden Markov models

Hidden Markov models (HMMs) were used both for calling TADs (Methods 2.1.5)
and for identifying chromosome compartments (Methods 2.5.2, discussed in Section
3.4.1). Here we briefly introduce the HMM framework in general terms.

HMMs are widely used in computational biology, and have been called ”the Legos of
computational sequence analysis” [112] due to their wide applicability. HMMs provide
a probabilistic modelling framework to explore any system that can be reduced
to a 1D state sequence. [113,114] In the discrete case, each state in this sequence is
capable of ”emitting” one of a number of symbols, each with its own probability. In
the continuous case, used in this work, a state instead has an associated emission
distribution which can be a simple univariate Gaussian or a more complex mixture
model. After an emission, each state has a number of ”transition” probabilities, where
the sequence can either change to another state or remain in the same state.

A typical representation of an HMM is shown in Equation 2, where hidden states
(θ) emit a sequence of observed states (y). [115]

. . . yi−1 yi yi+1 . . .

. . . θi−1 θI θi+1 . . .

(2)

HMM state emission and transition parameters can be learned from a sequence
of observations via the Baum-Welch algorithm, [116] a special case of the Expectation-
Maximisation algorithm applied to HMMs. Following initialisation of transition and
emission matrices (this can be random), the Baum-Welch algorithm first performs the
E-step, calculating the expected number of transitions and emissions via a Forward-
Backward procedure, then the M-step re-estimates transition and emission parameters
based on these expected values. These two steps repeat until the HMM parameters
converge to within a set tolerance.

Given a fully-specified HMM, the Viterbi algorithm can be applied to find the
most probable state sequence given a sequence of observations. [117] Using the nota-
tion of Equation 2, the Viterbi algorithm finds θ̂ = argmaxθ Pr(y|θ) using dynamic
programming. [115]
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2.3.4 Stepwise regression

Stepwise regression is a form of model selection applied to multiple linear regression.
This simple approach starts with a complete model and serially removes and/or adds
variables, then calculates a metric (here we use the Bayesian information criterion,
BIC) which weighs the the model likelihood against model complexity. Alternatively,
the procedure can be run in the opposite direction and build up a model starting from
scratch. In either case, the variable inclusion or exclusion process is iterated until the
metric reaches a (local) minimum, thereby generating a parsimonious model which
should be less prone to overfitting. Stepwise regression also aids interpretation by
selecting representative features from collinear clusters. [118]

It should be noted that despite its continued widespread usage, several statistical
issues have been identified with the stepwise procedure for model selection. [119,120]

2.3.5 LASSO

The least absolute shrinkage and selection operator (LASSO) is a form of `1 regularisa-
tion that penalises the sum of absolute values of standardised regression coefficients.
By penalising absolute values and sums, rather than squared values as in `2 regu-
larisation (Ridge regression, for example), coefficients can be shrunk to 0 thereby
removing terms from the model. Thus the LASSO combines coefficient shrinkage of
techniques like Ridge regression with a type of feature selection by promoting model
sparsity. [111,121]

Simply put, the LASSO minimises the sum of squared errors subject to a tuneable
constraint on the sum total of absolute model coefficients. In equation form, we are
fitting a simple linear model:

ŷ = β0 + β1x1 + β2x2 + . . . + βnxn

or ŷ = Xβ
(3)

We then wish to find that β which minimises ∑n
j=1(ŷj − yj)

2 while at the same time
satisfying the inequality:

p

∑
i=1
|βi| ≤ c (4)

Where here c represents a tuneable parameter inversely proportional to the level of
regularisation imposed on the model. It can be seen, for example, that if c is set to
the sum of the coefficients fit by ordinary least squares, the LASSO solution will be
equivalent. Equation 4 can be contrasted with Ridge regression, where the same in
inequality instead constrains ∑

p
i=1 β2

j .
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Formally, the LASSO problem has been expressed as: [111]

β̂lasso = arg min
β

{
1
2

N

∑
i=1

(yi − β0 −
p

∑
j=i

xijβ j)
2 + λ

p

∑
j=1
|β j|

}
(5)

This formulation introduces the tuning parameter λ, which translates β coefficients
such that larger values of λ place stronger constraints on the coefficient total, and thus
encourages greater shrinkage and model sparsity (Eqn. 5).

In this thesis, we used the glmnet R package to fit LASSO models. [122,123] In order to
select λ, we use a 10-fold cross-validation approach on a separate held-out training set.
We chose that λ which produced a mean cross-validated error within 1 standard error
of the minimum, thus favouring a slightly sparser model than the global minimimum.

2.3.6 Other modelling approaches

Linear regression was used as a baseline for comparison with more complicated
approaches such as Random Forest (Section 4.5.2). If the modelling accuracy achieved
with Random Forest regression could be matched by simple multiple linear regression,
the latter could be preferable as a faster and more interpretable modelling framework.
For comparison, linear regression models were fitted to matched input feature sets
and an intercept term.

Partial least squares (PLS) regression was also used to model compartment profiles
(Section 4.5.2). PLS regression is well-suited to highly correlated inputs, employing
a dimensionality reduction step to help address this redundancy, yet lacks the inter-
pretability of a multiple linear regression. Similar to RF, PLS regression is aimed at
building highly-predictive models rather than understanding singular relationships
between a predictor and independent variable. [124] The plsdepot R implementation
of PLS regression was used in this work. [125]

2.4 variable regions

2.4.1 Stratification by variability

Median absolute deviation (MAD) was chosen as a robust measure of the variability
in a given 1 Mb block between the three primary cell types used in this work (H1

hESC, K562 and GM12878). This simple metric is calculated by taking the median
eigenvector value for each genomic bin across the three cell types, then taking the
absolute difference between this median value and the two other recorded eigenvectors
(as well as itself). Finally, the median of these differences is then calculated to give a
MAD value per megabase bin.
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Due to only three numbers being considered, the MAD is also equivalent to the
minimum absolute difference from the median eigenvector value. That is, a MAD of
0.1 for a given region where cell type K562 has the median eigenvector value, means
that both GM12878 and H1 hESC had absolute eigenvectors ≥ K562 + 0.1. Larger
values report greater dispersion thus more variability between cell types.

Blocks were ranked by this measure and split into thirds that represented “low”
variability (the third of blocks with the lowest MAD), “mid” and “high” variability.
Each subgroup was then independently modelled using the previously-described
Random Forest approach (Section 4.4.3).

In another measure of variability, we also call regions of variable structure (RVS;
Section 3.6). RVS are those genomic regions whose compartment state differs in one
cell type relative to the other two. For example, if a 1 Mb bin was classified as “open”
in H1 hESC and “closed” in both K562 and GM12878, this is said to be an RVS, and
a “flipped” compartment (to open) in H1 hESC. As can be seen, RVS calls are cell
type specific: the same RVS that was called as flipped open in H1 hESC would not
be called as variable in K562, as necessarily in this scenario H1 hESC and GM12878

would not be concordant.

2.4.2 Chromatin state enrichment

Chromatin state annotations used in this work were retrieved from ChromHMM [85]

and SegWay [84] combined annotations. [88] These represent the consensus from two
independent chromatin state prediction algorithms, and ignore regions of apparent
disagreement; hence in theory making more robust and conservative predictions than
either algorithm independently. Nevertheless, Hoffman et al. [88] caution that in areas
of disagreement, each algorithm may highlight differing biological phenomena so
ideally should also be considered separately.

The set of state predictions from the combined algorithms are:

1. Predicted transcription start sites (TSS)

2. Promoter flanking regions

3. Transcribed reigons

4. Repressed regions

5. Predicted enhancers

6. Predicted weak enhancer or cis regulatory element

7. CTCF-enriched elements

Short, discrete state predictions such as enhancers were considered “shared” if
there was an overlapping enhancer annotation in either of the two other cell types,
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and labelled as “tissue-specific” otherwise. This was repeated for each of the called
chromatin states.

2.4.3 Gene ontology analysis

Regions of variable structure (RVS; Section 2.4.1) were tested for functional enrich-
ments using Gene Ontology (GO) annotations. [126] The DAVID tool [127] was used to
compare GO terms for genes located in variable compartments against a background
set of genes from all annotated compartment bins.

2.5 boundaries

2.5.1 TAD boundaries

Having called TADs (Section 2.1.5), we then have a set of boundaries at the start
and end of each domain. We generated average boundary enrichment or depletion
profiles by averaging input features into 50 kb bins spanning ±450 kb from the central
boundary bin.

To test for the enrichment or depletion of a chromatin feature over a given boundary
class, a two tailed Mann-Whitney test was used to compare the boundary bin with the
ten outermost bins of the window (5 from either side). Therefore we tested whether
there was any significant difference in rankings of input feature signal between bound-
ary bins and peripheral bins over all boundary instances per class. The significance
level at α = 0.01 was then Bonferonni-adjusted for multiple testing correction, and
results with p-values exceeding this threshold were deemed significantly enriched or
depleted at a given boundary.

2.5.2 Compartments

Eigenvectors were calculated as described previously (Section 2.1.4). A/B compart-
mentalisation has previously been called simply from the properly-orientated principle
component eigenvector, with positive values representing a bin in an A compartment
state, and negative values representing a bin in a B compartment state. [9] Using this
method, compartment boundaries occur whenever the eigenvector changes sign.

In this thesis compartment boundaries were called by first training a two-state
hidden Markov model (HMM) on the compartment eigenvector and then using the
Viterbi algorithm to predict the most likely state sequence that produced the observed
values (Methods 2.3.3). Justification for this approach is discussed in Section 3.4.1 and
we also note the similar use of an HMM in TAD calling (Section 2.1.5).
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The point at which transitions occurred between compartment states was taken as a
compartment boundary which was then extended ±1.5 Mb to give a 3 Mb window in
which a boundary was though to occur. Boundary enrichments and alignments were
tested in the same manner as TADs (Section 2.5.1).

2.5.3 Boundary comparisons between cell types

To compare boundaries between cells, each TAD and compartment boundary called in
K562 and GM12878 was compared with those called in H1 hESC. For each boundary,
the minimum absolute difference to the nearest matching boundary in H1 hESC was
recorded, and this was then compared with a null model of an equal number of
boundaries randomly-placed along available bins (i.e. TAD boundaries were called
at 40 kb, hence random boundaries could only be assigned to these same discrete
bins). A Kolmogorov-Smirnov test was then used to compare the empirical cumulative
distributions of these distances.

2.6 predicting tad boundaries

2.6.1 AUC-RF

To predict TAD boundaries we used a classification Random Forest model, built with
the AUC-RF algorithm, [128] as implemented in the AUCRF R package. [129] This is a form
of stepwise model selection which optimises feature subset selection relative to the
area under the receiver operating characteristic (AUROC), a metric which captures
both the specificity and sensitivity of a classifier hence is better-suited to unbalanced
datasets than previously-described RF variable selection methods that used simple
classification accuracy. [108,130] The AUC-RF procedure has been successfully applied
in other bioinformatics applications, such as in identifying a subset of most relevant
variants as part of a genome-wide association study. [131]

More specifically, the AUC-RF algorithm is a backwards elimination procedure,
commencing with variable ranking by importance. In these classification RF models,
mean decrease in Gini impurity (Methods 2.6.2) was chosen as the measure of variable
importance, as it has previously been proven to be more stable than the mean decrease
in accuracy. [128] Regardless, impurity and permutation-based importance measures
are thought to be largely consistent in many cases. [105,111]

Steps in the algorithm can be summarised as: [128]

1. Train an RF classifier using all available variables and calculate variable impor-
tance

2. Remove the least important 10% of variables and fit a new RF model
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3. Calculate the AUROC on predictions made with out-of-bag data

4. Iterate steps 2–3 until a single variable model is built

5. Select that model with the highest AUROC as calculated in step 3

Importantly, AUC-RF avoids some of the problems of stepwise regression. Both
over-optimistic model performance (due to repeated training and testing on the same
pool of data) and errors due to the instability of variable rankings are mediated
through an additional cross-validation step. [128]

The input feature set for this model was made up of the same 35 ENCODE features
used in models of compartment eigenvectors (Methods 2.2), with the addition of
counts of Alu repeat elements (as used in Section 5.2.5) and GERP scores as a proxy
for the degree of evolutionarily constrained sequence (Methods 2.2). TAD boundary
bins were called as previously described (Methods 2.1.5) and were resolved to 40 kb.
Bins containing a TAD boundary were our true positives (TP), and to generate true
negatives (TN) we took matched bins 450 kb upstream of each boundary bin. Of these,
a randomly-selected 80% of TP/TN pairs were used as our training and validation set
in each cell type, while the remaining 20% of cases were held-out as independent test
sets.

2.6.2 Gini importance

Gini importance was the variable importance metric used to rank variables during
the AUC-RF procedure (Section 2.6.1) and was also used in the analysis of a two-step
model prediction transcriptional output (Section 4.2). This measure is calculated as
follows.

The Gini impurity, G, of a single node containing some proportions of n classes is
calculated as shown (Eqn. 6), and is observably related to the concept of entropy or
information gain.

G =
n

∑
i=1

pi(1− pi) (6)

In our simple two-class setting (i.e. boundary, b, or non-boundary), this simplifies
to Equation 7. Here it can be seen that a G of 0.5 means the node contains a 50 : 50
split of class labels, whereas a node of 95% boundaries has a much lower impurity
(G = 0.095).

G = 2pb(1− pb) (7)

To convert the impurity into a measure of importance, we compare G of a parent
node with that of its two daughter nodes (Gd1 and Gd2), following a partition on a
given variable of interest.
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This decrease in Gini impurity can then be summed over all splits in which a specific
variable has been selected per tree (Nused), and the averaged over all trees in the forest
(ntrees). This approach is described in Equation 8.

I =
1

ntrees ∑
ntrees

Nused

∑
j=1

Gj − (Gd1 + Gd2) (8)

As can be seen through this derivation, the Gini importance captures information
regarding both how frequently a variable is selected at a node, and to what degree,
after splitting by said variable, the labelled inputs are now better separated in daughter
nodes. Through these concepts it is clear that variables with a larger Gini importance
are providing a greater amount of useful, discriminative information to the Random
Forest classification model.

2.7 metatad analysis

MetaTADs are a conceptual level of genome organisation proposed by collaborators
in the Pombo lab (Max Delbrück Center, Berlin). Their method for calling metaTADs
involves the constrained hierarchical clustering of those neighbouring TADs with
the greatest inter-TAD contacts. This pairing was recursed up to the level of whole
chromosomes, thus resulting in a tree of increasing metaTAD aggregation. Since
the calculation of metaTADs was performed and designed by collaborators, finer
details are omitted here but are discussed fully in the associated manuscript. [132] Our
contribution to the analysis of metaTADs is discussed in Section 5.4.

2.7.1 Size selection

For boundary analysis of metaTADs, again a similar approach was used to that of
TADs (Section 2.5.1) but with metaTADs thresholded to within a given range of
domain sizes. Those below 10 Mb were excluded, as to have no lower bound results
in 2

3 of all TAD boundaries likewise considered MetaTAD boundaries, reducing the
statistical power to detect any differences. 10 Mb was chosen as a compromise between
minimising the overlap between TAD and metaTAD boundaries, while also retaining
a large enough sample size (Section 5.4.1). An upper bound of 40 Mb was also
chosen, as beyond this threshold inter-TAD contacts were found to be no higher than
expected by chance (personal communication). In practice, the tree-like structure means
any upper-bound has little impact as a filter: in almost all cases, any boundary in a
metaTAD of size > 40 Mb will also form metaTADs below this value. Additionally, the
hierarchical nature of metaTADs means that some boundaries are present at multiple
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levels of the tree. Only one case of each boundary position was tested for feature
enrichments, and this was performed as with TAD boundaries (Section 2.5.1).

2.7.2 Collaborator datasets

Our collaborators in the metaTAD project performed ChIP-seq experiments for PolIII
(three variants), H3K27me3, CTCF and DNase-I hypersensitivity. Mapped reads
from these experiments were processed using MACSv2

[99] to give relative signal
over background (from an estimated local model), which was then averaged over all
boundaries genome wide.

Cap analysis of gene expression (CAGE) data was produced by the FANTOM
consortium. [133,134] This method produces sequencing data from the 5‘ end of cDNAs,
and can be used to quantify expression activity at precise promoter locations. [135] Here,
CAGE was performed at multiple points along a neural-differentiation timecourse
and tags were clustered to form CAGE TSS (CTSS) in a manner developed for the use
within the FANTOM5 project. [133] To count these CTSS over boundary bins, we simply
intersect the annotations and count CTSS per bin using bedtools. [136]

Gene density over metaTAD boundaries was calculated using UCSC mm9 gene
models. [137] Again simple intersections were taken to count genes over boundaries
using bedtools [136] and requiring a minimal overlap fraction of at least 0.5% of a bin
(250 bp).

2.7.3 LAD coincidence

Lamina associated domains (LADs) are genomic regions which are in contact with
lamin proteins A, B and C, found on the inner nuclear membrane (reviewed in 138).
To compare metaTAD boundaries with those of LADs, we made use of previously-
published Lamin-B1 DamID microarray probe intensities. [139] For analysis over bound-
aries, these values were averaged into the same boundary windows as used previously
(50 kb bins ±450 kb around boundary, as in Section 2.5.1).

Transitions between high and low lamina association were detected by fitting a linear
regression model across each series of consecutive boundary bins (i.e. Lamina assoc. =
β · bin + c). Linear models which had an absolute coefficient |β| > .05 were taken as
crossing a LAD transition. This threshold is a heuristic which appears to perform well
at conservatively selecting clear transitions. As a method of seriation for the y-axis of
heatmap figures (e.g. Fig. 59), boundaries were divided into those that coincided with
a lamin transition and those that did not, and members within each group were then
sorted by average intensity.

To test the significance of the association between boundaries and lamin transitions,
we circularly permuted both TAD and metaTAD boundaries within each chromosome
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1000 times, and calculated the proportion of boundaries that crossed LAD boundaries
using the same linear regression procedure described above. Empirical p-values
were then calculated as the number of permuted results greater than or equal to the
observed value.

2.8 giemsa band comparison

Cytogenic band data and Giemsa stain results were downloaded from the UCSC
genome browser (table cytoBandIdeo). The genomic co-ordinates are an approxima-
tion of cytogenic band data inferred from a large number of FISH experiments. [140]

To compare G-band boundaries with our compartment data, we allowed for a
±500 kb inaccuracy in G-band boundary. For each G-band boundary, the minimum
absolute distance to any compartment or TAD boundary was calculated for each
cell type. To generate a null model, we calculated 20 circularly-permuted sets of
G-bands per chromosome, and recalculated their distance from our compartment
boundaries. Differences were then compared as empirical cumulative distributions
using a a two-sided Kolmogorov-Smirnov test.

2.9 nuclear positioning

Previously published data on chromosome positioning preference within the nucleus
was used to label each chromosome as “inner”, “middle” or “outer”. [141] Chro-
mosomes whose DAPI (4′, 6-diamidino-2-phenylindole) hybridisation signals were
significantly enriched (p ≤ 2× 10−2) in the inner nuclear shell, as defined by Boyle et
al. [141], made up the “inner” group and included chromosomes 1 and 16. Similarly
the “outer” group had enriched signals (p ≤ 5× 10−3) in the outer shell relative to
the inner nuclear shell and included chromosomes 2, 3, 11-13 and 18. Remaining
chromosomes were assigned to the “middle” group and showed no significant to
either inner or outer nuclear shells (p ≥ 0.1). [141]

As the nuclear positioning data used in this work was recorded at the level of
chromosomes, rather than at regular genomic bins, the significance of any difference
in eigenvectors between chromosome locations was assessed through a two-sided
Wilcoxon rank sum test on the median eigenvector values of each chromosome.
Chromsomes enriched in the nuclear periphery were compared with those positioned
in the central nucleus. This chromosomal positioning data was measured in lym-
phoblastoid cells, though this level of nuclear organisation is thought to be largely
conserved between cell types [142,143] and even among higher primates, [144] so should
be comparable across cell types for this purpose.
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2.10 modelling transcriptional output

2.10.1 Reproducing a published study

In Section 4.2 we reproduce and extend a previously published study by Dong et al. [94]

In doing so, we reuse much of the code and materials made available by the authors
and more widely by the ENCODE consortium, [76] of which this paper was a part.
Some scripts were extracted from the ENCODE virtual machine, [145] designed to
provide an environment in which to reproduce their main findings. [77]

Input features for models of transcription were derived from the January 2011

ENCODE data freeze. [76] Normalised ChIP-seq signals were generated by ENCODE
using wiggler and retrieved for this study as bigWig files. These were averaged into
40× 100 bp bins across each GENCODE v7 TSS, to give ±2 kb windows around
each start site. These bins were then used to find the ‘bestbin‘, that which correlates
best with transcriptional output on a training subset of TSS. [94] A bin representing
the average intensity over the whole gene (TSS to TES) was also considered. That
which best correlated on a training set was then used as the representative region for
that feature in subsequent modelling steps. [94] The justification for this approach is
discussed in Section 4.2.1.

2.10.2 Predicting FANTOM5 expression levels

We transferred this transcriptional modelling approach to what was at the time novel,
unpublished CAGE data produced by the FANTOM consortium. This data has since
been released in the FANTOM5 series of publications. [133]

Specifically, we used H1 hESC t0 CAGE data from a differentiation timecourse study.
The consortium pre-processed raw CAGE tags into clusters using decomposition-based
peak identification. [133] To filter for gene-associated CAGE clusters, we discarded
those tag clusters centered on a point > 50 bp from an Ensembl (v69) annotated TSS,
thereby removing transcribed enhancers and other non-genic regions with detectable
transcription. When multiple clusters were linked to the same TSS, that with the
highest peak maximum was kept. Expression was matched with ENCODE ChIP-seq
data for the H1 hESC cell type (processed as described in Section 2.10.1) and an
additional measure of replication timing retrieved from Ryba et al. [146] (Section 4.2.2).

Input data for models of FANTOM5 CAGE are shown in Table 3.
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Table 3: ENCODE datasets generated in the H1 hESC cell line and used in models of tran-
scriptional output.

Histone modifications Other

H3K27ac, H3K27me3,
H3K36me3, H3K4me1,
H3K4me2, H3K4me3,
H3K79me2, H3K9ac,

H3K9me3, H4K20me1

HDAC6,
DNase I,
H2A.Z,
Input

2.11 4c data analysis

For computational analysis of 3C-seq data (also known as 4C), the experimental
protocol used by our collaborators recommends the r3Cseq R package, [147,148] part of
the BioConductor repository [149,150] for the R programming environment. [151]

This package produces normalised interaction frequencies which are comparable
between experiments and then assigns statistical significance to any identified contacts,
thereby reporting regions that co-localise to a greater degree than expected by their
genomic proximity alone.

2.11.1 Normalisation

The normalisation procedure for 4C data is adapted from a previous method for
normalising deepCAGE data between samples. [152] In short, the reverse-cumulative
distribution of read counts per restriction fragment is fitted to a power-law model;
this effectively encodes the a priori expectation of exponential decay of the number
of contacts as distance increases from the viewpoint. Transformed read counts per
million (RPM) can then be retrieved from a standardised reverse cumulative distri-
bution, parametrised with an empirical coefficient for this power-law relationship
(α = −1.35). [148]

This normalisation procedure has the effect of making the output RPM value
independent of the original experiment’s sequencing depth and, more importantly,
acts to reduce the impact of artefacts and errors by enforcing the expected power-law
relationship of restriction fragment read counts.

2.11.2 Significance estimation

The r3Cseq package [148] also attempts to assign a measure of statistical significance to
observed contact frequencies. This is done through a simple method of background
estimation based on observed values. The justification for this non-independent esti-
mate of background signal is that a relatively small proportion of observed contacts
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are expected to be significantly enriched, thus will not unduly perturb an average
signal. [148] An improved method that avoids this assumption has since been devel-
oped where a background model was iteratively fitted, with outlier removal at each
revision. [153]

Here a non-parametric cubic smooth spline is fitted to normalised read count data
using a heuristic smoothing parameter. This model then provides an expected level
of interaction at a given distance from the viewpoint in cis. From this, it is simple to
calculate a Z–score as:

Z =
O− E

σ
(9)

Where σ is the standard deviation of residuals from the observed (O), expected (E)
difference. This Z-score can then be converted to a p-value which in turn is corrected
for multiple testing using bootstrapped estimates of false-discovery rate (FDR) q-
values [154] (as implemented in the qvalue R package [155]). This Z–test approach
assumes a normally-distributed test statistic, an assumption that typically does not
hold on 4C data where interactions distal to the viewpoint are increasingly sparse,
however this approach and variants thereof have been applied in a variety 4C and 5C
analyses (e.g. 7,33,54,156–158). Some publications (e.g. 29) use a more appropriate
distribution to assign p-values to a Z-type statistic, such as the Weibull (extreme value)
distribution.

While we are mostly concerned with these cis interactions, r3Cseq also offers signif-
icance testing for trans interactions between the viewpoint and restriction fragments
on different chromosomes. Here instead of distance scaling, the expected (E) term in
Equation 9 is just the genome-wide background average, excluding regions ± 100 kb
around the viewpoint. [148] This means the absolute values of normalised RPMs re-
ported for trans interactions are in practice upscaled, being equivalent to experimental
RPMs less the most deeply-sequenced regions, i.e. the viewpoint and immediately
adjacent regions.

2.12 scripts and other analyses

Much of this work has been performed by writing custom scripts in the R program-
ming language. [151] Code for the majority of analyses described in this thesis are avail-
able through a public git repository hosted on github at github.com/blmoore/3dgenome
(instructions on how to reproduce analyses and figures are included therein). A spe-
cial mention goes to the packages of Hadley Wickham which are used throughout,
especially ggplot2 [159] and dplyr [160].

The programming language python [161] was also employed to a lesser-extent, as
were command–line tools such as bedtools [136] and SAMtools [162]. Additionally
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methods

command-line BigWig* tools [163] were used, as well as the UCSC genome browser
and associated data tracks. [164–166]
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3 REANALYS IS OF H I -C DATASETS

3.1 introduction

Since the initial publication of the Hi-C technique in 2009, [9] there has been rapid
advancement of both the technique itself and the resolution at which interaction
frequencies have been analysed. From proof-of-concept analyses at 1 megabase (Mb)
and 100 kilobase (kb) resolution, [9] subsequent experiments achieved resolutions first
of 40 kb [10], then 10 kb [12] and most recently 1 kb, [13] enabling bona fide genome-wide
fragment-level analysis for the first time.

Such rapid progression in the field has resulted in a wide variety of public Hi-C
datasets being available, albeit with differing qualities. With proper correction and at
a suitable resolution, these interaction frequencies can be compared and contrasted
both within and between species.

In this chapter we uniformly reprocessed publicly-available human Hi-C datasets in
order to address fundamental questions about the stability of higher order genome
organisation between cell populations from the same species. Previously Hi-C studies
have compared two samples, such as K562 against GM06990

[9] or IMR90 against
GM12878. [10] Here we make use of three Hi-C datasets corresponding to extensively-
studied human cell lines: K562, GM12878 and H1 hESC. Together these make up
the ”Tier 1” cell lines studied by the ENCODE consortium, [76] and hence have huge
amounts of matched locus level features, such as ChIP-seq and histone modification
data available.

By combinatorial reanalysis of these cell-matched datasets, we can comprehensively
investigate the quantitative relationships between higher order chromatin structure
and locus level chromatin features.

3.2 hi-c reprocessing

Each Hi-C dataset used in this work was reprocessed from raw sequencing reads
using the same pipeline (Methods 2.1). Briefly, raw sequencing reads were sourced
from three different publications: Lieberman-Aiden et al. [9], Dixon et al. [10] and Kalhor
et al. [20]. These reads were mapped to human genome build hg19 using an iterative
mapping procedure that maximised the number of uniquely mappable reads from
each sample (Methods 2.1.1).
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Figure 8: Iterative correction converts raw counts to normalised interaction frequencies.
The sample with highest sequencing depth (H1 hESC) is shown alongside a sample with much
lower sequencing depth (K562) both before and after iterative correction and normalisation
procedures were applied (Methods 2.1) at 40 kb resolution for a 10 Mb section of human
chromosome 18. Fill gradients are on a log10 scale.

Next a filtering step was applied, which removed those fragment pairs that were
likely artifactual or erroneous (Methods 2.1.2). A correction step was then applied,
whereby biases such as mappability and GC content were removed to give each
fragment equal visibility (Methods 2.1.3). Overall these steps produced comparable
maps of interaction frequency in different cell types, despite their differing origins
(Fig. 8).

Figure 8 shows a 10 Mb region of chromosome 18 before and after filtering and
normalisation in two different cell types. Self-interacting domains visible in the deeply-
sequenced H1 hESC cell type also become more visible in the K562 cell type after
normalisation. In addition many of the long-range and intra-domain contacts visible
in each raw contact map are down-weighted during the normalisation procedure,
indicating their prominence was enhanced by biases or other sources of noise in the
experimental procedure (Fig. 8).

The relative sparsity of the K562 Hi-C contact map compared to that of the H1 hESC
cell line should also be noted (Fig. 8). At the time much of this study was performed,
deeply-sequenced Hi-C datasets for cell lines K562 and GM12878 were not available,
thus the majority of analyses were performed at a lower resolution of 1 Mb to further
reduce the impact of variable sequencing depth between cell lines (Methods 2.1).
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3.3 compartment profiles

3.3 compartment profiles

After uniformly reprocessing each Hi-C dataset and calling compartment eigenvector
profiles (Methods 2.1.4), we can compare these between three human cell lines. We
find compartment profiles have a striking concordance (Fig. 9), despite the variable
sources of both sample material and experimental data. This strong correlation of
higher order chromatin structure (at the level of compartments) between three very
different human cell types shows that the vast majority of genomic regions appear to
be constitutively present in either the A or B compartments regardless of cell lineage.

This close correspondence also validates our approach of combining these different
datasets, and suggests our uniform pipeline is successfully accounting for differences
in sequencing depth and other batch effects. The pairwise Pearson correlation co-
efficients between these independent measures are all in the interval [.75, .8] (Fig.
10). Also of note is that each cell type independently shows a similar bimodal dis-
tribution of compartment eigenvector, indicative of the two distinct underlying A/B
compartment states (Fig. 10).

3.4 domain calls

3.4.1 Compartments

The continuous compartment eigenvector is most commonly used as-is to classify A/B
compartments by thresholding based on sign: typically the eigenvector is orientated
such that positive values reflect A compartments and negative values B compart-
ments. [9,20] However, given that compartments are understood to be generally broad
and alternating domains along a chromosome, often aligning with other large domains
such as LADs, an improved classification method might penalise the calls of very short
compartment calls, which may be the result of noise. For this reason, instead of using
raw eigenvector values we consider observed values as emissions from unobserved
underlying states (Fig. 11). We built a hidden Markov model (HMM; Methods 2.3.3)
to represent these states through a well-described probabilistic framework. [112]

Firstly we designed the HMM to have two unobserved states with univariate
Gaussian distributed emissions (representing our A and B compartments; Fig. 12). To
parameterise these states we used the iterative Baum-Welch algorithm, an Expectation-
Maximisation procedure designed for HMMs. Having parameterised the HMM for
each cell type, we then use the Viterbi algorithm to infer the most likely state sequence
to have generated our observed data. This two-state sequence is then used to assign
compartment identities to genomic bins. A schematic of this procedure is shown in
Figure 11.

39



reanalysis of hi-c datasets

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11

0

50

100

150

200

250

B A B A B A B A B A B A B A B A B A B A B A

C
hr

om
os

om
e 

po
si

tio
n 

(M
b)

Cell type

GM12878

H1 hESC

K562

chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22 chrX

0

50

100

150

B A B A B A B A B A B A B A B A B A B A B A B A

C
hr

om
os

om
e 

po
si

tio
n 

(M
b)

Cell type

GM12878

H1 hESC

K562

Figure 9: Compartment profiles are observably well-correlated between human cell types
and across all chromosomes. Compartment eigenvectors are plotted along the lengths of each
human chromosome (chrY and chrM are omitted). In each case the overlaid profiles show
strong concordance between the three different human cell types under study.
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Figure 10: Compartment eigenvectors are highly correlated between human cell types.
Megabase resolution compartment eigenvector values are shown in a plot matrix. Upper
triangle: Pearson correlation coefficients between pairs, with 95% confidence intervals; diago-
nal: kernel density estimates of eigenvector values per cell type; lower triangle: pairwise x-y
scatterplots of compartment eigenvector values.

In practice, this approach acts to de-noise our compartment calls. Whereas single
sign-changes along the series would (under a simple thresholding procedure) have
resulted in a single-block compartment, these may now be modelled as noisy emissions
from a single unobserved state. An exemplar region is shown in Figure 13. This shows
an approximately 50 Mb region from chromosome 8 with eigenvector data from the
H1 hESC cell line. A simple thresholding method in this region calls a total of 12
regions, whereas our HMM method finds only 6 larger regions in the same window.
The disparity is caused by very short and single-bin compartments being disfavoured
by the HMM-based method (e.g. Fig. 13).

Having called compartments we can compare their properties across cell types. In
each case, a majority of chromosome compartment sizes are in the range 0–10 Mb,
with a handful of compartments reaching up to 40 Mb in size (Fig. 14). Median sizes
for compartments called in this work match those reported previously, with a median
size of around 5 Mb. [17] Our slightly larger mean compartment sizes (up to 7.6 Mb in
H1 hESC) may be due to our altered domain calling procedure (Fig. 13) and is clearly
influenced by some large outliers (Fig. 14).

Next we compare compartments between the three cell types under study. To do
this, we calculate the minimum absolute distance from each boundary in one cell type
against those in a designated comparison cell type (we used H1 hESC). The cumulative
distribution of these boundary differences is shown (Fig. 15) and compared to a null
distribution of random compartment boundaries (Methods 2.5.3). We find boundaries
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Figure 11: Overview of HMM method for compartment calls. Schematic of HMM method
for compartment calls, showing transition probabilities and emissions distributions learned
in the GM12878 cell type. A description of HMMs is given in Methods 2.3.3. Emission
distributions for each cell type are shown in Figure 12.
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Figure 12: Univariate Gaussian emission distributions for A and B unobserved HMM
states. Probability distributions for compartment eigenvector values per HMM state are
shown for each cell type. Distributions centred below zero (lighter colours) show the distribu-
tion for the B compartment state, distributions centred above zero (darker) represent the A
compartment state.

Figure 13: Compartment calls by simple thresholding method or context-aware HMMs.
Chromosome compartments have previously been called through simple thresholding at 0, [9]

in this work we use a novel HMM-based method to call unobserved states that have emitted
our noisy observed values (right).
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Figure 14: Size distributions of compartments called in three human cell types. Kernel
density estimates of compartment sizes (Open: A; Closed: B) are shown per cell type with
summary statistics (inset), including mean compartment size with 95% confidence intervals.

are significantly more closely aligned across cell types than is expected by chance. For
example, genome-wide approximately 37% of compartment boundaries in H1 hESC
have a corresponding boundary within 100 kb in GM12878 (and 35% in K562, but
only 5% in random boundaries). Comparisons of the cumulative boundary distance
distributions yield statistically significant differences relative to the null model (K-S
test, K562: D = 0.47; p ≈ 0; GM12878: D = 0.49; p ≈ 0; Fig. 15).

3.4.2 TADs

Topological associating domains (TADs) are self-interacting blocks of the genome first
described by Dixon et al. [10] We applied the original TAD calling method without
modification, which uses a measure of the directional contact bias of a fragment
(Section 1.1.4 and Fig. 3).

The Dixon et al. [10] method of calling TADs relies on the detection of boundaries, [13]

thus it is affected by sequencing depth: experiments with sparser contact matrices
may not contain enough for a sufficiently high degree of bias to allow a boundary call.
This is evident in our datasets even after normalisation, with the deeply-sequenced H1

hESC cell type having approximately 50% more TADs called than in the GM12878 cell
type (Fig. 16). The increased power to detect TAD boundaries also results in smaller
domains, on average, in the H1 hESC cell line (Fig. 17). This effect could have been
mitigated by down-sampling reads in the H1 cell type, but at a cost of reducing the
quality of the best dataset under study. Instead this disparity should just be noted
as a potential cofounder in downstream TAD analysis; at lower-resolution such as
that used to calculate compartment eigenvectors (1 Mb) this sensitivity to sequencing
depth is not evident (Figs. 9, 10).
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Figure 15: Compartment boundaries are shared between cell types. The empirical cumula-
tive distribution functions (ECDF) of distances between H1 compartments and those called in
GM12878 and K562 are shown. Vertical lines mark distances of 0, 1 and 2 bins. Also plotted
is the ECDF of a null model, where distances were calculated to shuffled boundaries at a
matched resolution (Methods 2.5.3).
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Figure 16: The number of TADs called per chromosome in each cell type under study. A
greater number of TADs were called in H1 hESC (2, 897 total) than in GM12878 (1, 925) or
K562 (1, 677), due to the difference in sequencing depths in each experiment when matrices
were binned at 40 kb resolution.
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Figure 17: Size distributions of TADs called in three human cell type. Densities of TAD
sizes called in each cell type under study. Vertical lines show the median TAD size in each cell
type (Gm12878: 1.08 Mb; H1 hESC: 0.72 Mb; K562: 1.2 Mb). Sizes distributions shown on a
log10 scale.

0.00

0.25

0.50

0.75

1.00

< 1 kb 100 kb 10 Mb
Distance to nearest H1 boundary

E
C

D
F

GM12878

K562

Null

Figure 18: TAD boundaries are shared between cell types. The empirical cumulative
density functions (ECDF) of distances between H1 TADs and those called in GM12878 and
K562 are shown. Vertical lines mark distances of 0, 1 and 2 bins. Also plotted is the ECDF of a
null model, where distances were calculated to shuffled boundaries at a matched resolution
(Methods 2.5.3).

Despite differing numbers, there is still detectable levels of conservation of TADs
between cell types (Fig. 18). Genome-wide, 45% of all H1 TAD boundaries have a
matching boundary in GM12878 in the same or an adjacent 40 kb bin (K562: 41%,
null model: 22%; K–S test: D = 0.2, p ≈ 0). To illustrate this conservation with a
real example, a 20 Mb region of chromosome 2 is pictured (Fig. 19), highlighting the
conservation between both TADs and compartment calls across the three cell types
and at multiple scales: from chromosome-wide 1 Mb compartment eigenvectors, to
TADs with individual boundaries resolved to 40 kb.
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Figure 19: Concordance of chromatin structure at multiple scales over three human cell
types. The eigenvector compartment profile is shown for chromosome 2 for three human cell
types (left). At higher resolution, the zoomed region illustrates conservation of topologically
associating domains (TADs) over 20 Mb of the same chromosome.

3.5 domain epigenomics

The use of well-studied human cell types allows intersection with publicly-available
epigenomics datasets, such as those produce by the ENCODE consortium. [76] In
total, 35 cell-matched ChIP-seq datasets were available for all three of the tier 1

ENCODE cell lines: GM12878, H1 hESC and K562 (see Methods 2.2). In this section
we integrate reprocessed Hi-C data and derived higher order domains with these
various high-resolution datasets.

3.5.1 A/B compartments

The overwhelming majority of intersected chromatin features are significantly enriched
in active A compartments relative to B compartments (Fig. 20). This is expected since
A compartments represent the actively-transcribed and accessible portions of the
genome, and have previously been shown to positively correlate with many of the
features shown. [9,17]

Exceptions to this rule are few. However the repressive histone modification
H3k9me3 is found more often in B compartments in two cell types, as is the P300

transcription factor (Fig. 20). Also of note is the histone variant H2A.Z which is
significantly enriched in A compartments in GM12878 and K562, but this relationship
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Figure 20: The chromatin signatures of A/B compartments. Notched boxplots summarise
the distribution of each feature over 1 Mb bins in open (A) and closed (B) compartments
genome-wide.
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3.5 domain epigenomics

is reversed in the embryonic stem cell line (Fig. 20). Recent evidence suggests
specialised roles for H2A.Z in regulating both repression and activation during
embryonic stem cell differentiation, acting as a “general facilitator”. [167] Additionally
H2A.Z has been reported to mark histone octamers for depletion, thereby permitting
gene activation during differentiation. [168] Potentially, then, the H2A.Z enrichment in
B compartments could be driven by regions soon to be de-repressed as the stem cell
differentiates.

3.5.2 TAD classes

Unlike compartments, initially TADs were not thought to be correlated with blocks
of chromatin features. [10] Later studies have linked TADs with such enrichments,
first in Drosophila [31] and later in human cells, where it was argued TADs are merely
a low-resolution window to smaller ”sub-compartments”, bearing similar active
and inactive marks to their much-larger namesakes. [13] Here we look for evidence
that TADs called in our human cell types correspond to the ”epigenomic domains”
identified in Drosophila by Sexton et al. [31] Epigenomic domains were identified through
supervised clustering of ”physical domains” (TAD analogues called in Drosophila)
by their average enrichment for selected epigenomic features of known function, for
example enrichment of H3K27me3 mark was used to call Polycomb (PcG) associated
domains.

We found that TADs called across the three cell types used in this work could
similarly be clustered into transcriptionally active (active), repressed heterochromatin
(null) and polycomb-associated (PcG) domains, based on the patterns of DNase hy-
persensitivity, H3k9me3 and H3k27me3, respectively (Fig. 21). Drosophila physical
domains were clustered into four categories, with three of those matching our annota-
tions. The fourth Drosophila domain type was enriched for the HP1 protein (therefore
likely centromeric) for which we did not have ENCODE ChIP-seq data in all human
cell types under study.

This analysis reveals that active compartments typically cover both active and PcG-
associated TADs, while B compartments appear more homogeneous and are composed
mostly of H3k9me3-enriched heterochromatin even when considering fine-grained
TAD structures rather than megabase-sized genomic blocks (Fig. 21).

These findings also link with recent work that suggested TADs are windows into
“sub-compartments” [13] which more closely reflect the functional enrichments of
compartments. However, in our data we did not find statistical support for the
suggested 5 classes of sub-compartment; instead, an ensemble of algorithms for
optimising the number of cluster centroids voted for two or three clusters of TADs
(Fig. S1). This is not wholly surprising as Rao et al. [13] report sub-compartments only
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Figure 21: TADs reflect epigenomic domains. Following the Drosophila results of Sexton
et al. [31], clustering of TAD domains by mean log2 signal of 34 ENCODE features distinguishes
null, active and polycomb-associated (PcG) domains, as well as reflecting the encompassing
A/B compartments.
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on extremely deep-sequenced samples, and at a scale of organisation below that of
TADs.

3.6 variable regions

Despite the vast majority of the genome being in matched chromatin compartments
across human cell types (Fig. 9), there are also regions of disagreement. Reasons for
observable differences include technical errors and biases, but also more interesting
functional explanations, where cell-type specific activation or repression is reflected in
changes in higher order structure.

To conservatively call regions of variable structure (RVS), we used HMM-called
compartment states and selected those which were either: i) open in one cell type
and closed in both others or ii) closed in one cell type and open in both others. This
left sets of RVS which could be considered as ”flipped open” or ”flipped closed” in a
given cell type.

3.6.1 Chromatin state enrichment

Given our conservative definition of RVS (Section 3.6), such notable changes between
transcriptionally permissive and repressive environments might be expected to be
associated with cell-type-specific biology, such as functional chromatin states. To
test this, we used consensus predicted chromatin state annotations, built from two
machine learning algorithms, ChromHMM [86] and SegWay [84,88], and tested for enrichment
or depletion in our set of RVS (Methods 2.4.2).

We found that RVS show a striking enrichment for cell-type specific enhancers
in both of our derived cell lines, but not in embryonic stem cells (Fig. 23). This
observation is consistent with the undifferentiated embryonic stem-cell type lacking
lineage-specific enhancer contacts active in its pluripotent state. The same pattern was
not seen for enhancers shared between two or more of the cell types under study. We
observed a similar enrichment for cell-type-specific transcription but not for several
other chromatin states including promoter activity (Fig. 24).

Together these state enrichments suggest the identified RVS often reflect functional
changes at regions of cell-type specific biology, with heightened enhancer and tran-
scriptional activity in the relevant cell type (Fig. 24). Combined with the observed
large-scale concordance of higher order chromatin organisation between cell types
(Figs. 9, 19), these results reinforce a model of organisation whereby chromatin organi-
sation is largely conserved and static across cell types, but also permits local flexibility
in order to activate or repress regions of biological importance to a given cell type.
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Figure 22: Structurally variable regions indicate cell type specific biology. Regions occupy-
ing the active A nuclear compartment in one cell type, but the repressive B compartment in the
other two, were selected and ranked by the number of predicted active enhancers. Examples
of particular interest from the top 5 regions per cell type are shown: (A) the chr5:158-159 Mb
region which occupies the open A compartment in GM12878 cells, (B) the chr20:21-22 Mb
region which is open in H1 hESC, (C) the chr8: 106-107 Mb region which is open in K562.
Displayed tracks are: known (UCSC) genes, compartment eigenvectors, chromHMM/Segway
combined chromatin state predictions, open chromatin FAIRE peaks, and H3K27ac signal.
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Figure 23: Regions of variable structure are enriched for cell type specific enhancers. Num-
bers of predicted enhancer states (cell type specific or shared between two or more cell types)
are shown for regions with altered (open or closed) and non-altered (none) compartments in
each cell type.

3.6.2 Gene ontology enrichment

Specific examples of RVS highlight genes of interest (Fig. 22) but should be coupled
with statistical evidence prior to suggestions of a general trend. For this reason we
used Gene Ontology (GO) terms to test for functional enrichment within open RVS
per cell type.

Functional enrichments of genes found in ”flipped open” RVS in each cell type
were calculated using DAVID [127,169] and filtered by false discovery rate (FDR < .05;
Methods 2.4.3). This revealed slight enrichments for keywords ”blood”, ”oxygen
carrier” and ”β haemoglobin” in the K562 cell type, a multipotent cell type which
is known to show properties of an early erythrocyte, among others. [170] However,
in the other two cell types we did not find significant enrichments across regions,
except for artefacts caused by violations of the independence assumption used in GO
term hypergeometric testing. Specifically, our RVS blocks were at least 1 Mb each so
generally contain more than one gene, thus enrichments were seen for those gene
families known to form paralogous clusters along chromosomes, such as olfactory
receptors. The full results of these tests are given in the appendix (Tables A1, A2, A3).

The size of RVS could also explain why we do not capture the relationship hinted
at by our cherry-picked examples (Fig. 22). Given that regions contain multiple (often
unrelated) genes, we can imagine a case where a cell type specific locus is activated
and moves into a more central position, disturbing adjacent genes which remain in
a repressed state. Thus the cell type specific signals contained within the sum of all
RVS in a given cell type could be obscured by the noise of adjacent genes captured in
these broad compartment transitions.
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Figure 24: Distributions of features across all predicted chromatin states in regions of
variable higher order structure. Distributions of the average coverage of predicted chromatin
states in each Mb per cell type are shown as bean plots. Predicted chromatin states are those
from Hoffman et al. [88] and are labelled as: TSS: promoter and TSS; PF: promoter flanking
region; E: enhancer; WE: weak enhancer or cis-regulatory element; CTCF: CTCF enriched
element; T: transcribed region; R: repressed or low-activity (Methods 2.4.2).

54



3.7 nuclear positioning

3.6.3 Contact changes

A defining characteristic of active A compartment regions is a preferential bias in
contacting other A compartment regions. [9] However, it is not clear whether cell-type-
specific transitions in higher-order structure are solely compartment-level phenomena,
or involve other structural strata. We therefore examined the genome-wide contact
profiles of each region of variable cell-type-specific chromatin structure in detail.

If our cell-type-specific RVS are mediated by finer-scale structural levels (such as
TADs) we might expect to see predominantly short-range contact changes in their
underlying contact profile. Instead, we found that variable regions preferentially
interact with other A compartment regions in the cell types in which they are active
(Fig. 25), but not in the other cell types in which they are inactive. This supports the
idea that these cell-type-specific regions are undergoing compartment-level transitions,
disproportionately mediated by the formation of long-range contacts, while also
not precluding additional changes at lower levels such as TADs. Furthermore these
contact shifts, particularly when coupled with the observed functional enrichments
for transcriptional machinery and enhancer activity (Section 3.6.1), are consistent with
active RVS selectively entering into ”transcription factories”, sites of co-ordinated
transcription between potentially distal loci. [171]

3.7 nuclear positioning

Chromosome positioning within the nucleus is known to reflect gene density, with
the most gene-dense chromosomes occupying the centre of the nucleus in human
cells. [172] Kalhor et al. [20] used a Hi-C variant to recreate probability density maps of
chromosome positions which again reflected this feature of higher order chromatin
organisation, and also reported active regions were more diffuse than inactive. A
testable hypothesis with the eigenvector data used in this work is that active A
compartments are enriched in the central nucleus of our human cell types, and B
compartments are preferentially located in the nuclear periphery.

To test this, published data on chromosome positioning preference within the
nucleus was used to label chromosomes as “central” or or “edge”. [141] Chromosomes
whose DAPI hybridisation signals were significantly enriched (p ≤ 2× 10−2) in the
inner nuclear shell, as defined by Boyle et al. [141], made up the “central” group and
included chromosomes 1, 16, 17, 19 and 22. Similarly the “edge” group had enriched
signals (p ≤ 5× 10−3) in the outer shell relative to the inner nuclear shell and included
chromosomes 2, 3, 4, 7, 8, 11, 13 and 18. The remaining chromosomes showed no
significant preference to either inner or outer nuclear shells at α = 0.05. [141]

We found that positive eigenvectors (reflecting A compartments) did show a modest
relative enrichment in centrally-positioned chromosomes relative to those located at
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Figure 25: Regions of variable higher order structure change their genome-wide contact
profiles to favour active compartments. Genome-wide normalised contacts were summed
for each ”open” region of variable structure and the relative proportion of those that were with
active / A compartments is shown across the three cell types used in this study. Proportions
were subtracted from the genome-wide average per cell type, such that positive values indicate
a greater than expected interaction bias with active compartments. These data are presented
both as a summary notched boxplot (A) and with each individual region visualised, sorted by
relative proportion of A contacts in active cell type (B).
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Figure 26: Chromosomes located at the nuclear periphery hold a greater proportion of
inactive B compartments than those in the central nucleus. Kernel density estimates show
the distributions of A (positive eigenvectors) and B compartments (negative eigenvectors) at
the edges of the nucleus and at its centre. Positioning data from Boyle et al. [141] (Methods 2.9).

the nuclear periphery (Fig. 26). The significance of this observation was determined
by a two-sided Wilcoxon rank sum test on the median eigenvector values of each
chromosome, comparing the medians of those chromosomes located in the nuclear
periphery and centre (Methods 2.9). The difference was found to be statistically
significant in each case (GM12878: p < 0.002; H1 hESC: p < 0.002; K562: p < 0.05)
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4 INTEGRAT IVE MODELL ING AS A TOOL
TO EXPLORE B IOLOG ICAL SYSTEMS

4.1 introduction

Large-scale chromatin data has recently been produced by multiple consortia, most no-
tably ENCODE [76] (Section 1.4.1) but also the NIH Roadmap Epigenomics project. [173]

The breadth and depth of this new data offers unprecedented opportunities to advance
our understanding of the complex biology of the chromatin landscape. To this end,
studies have already enjoyed success in integrating these data through modelling
techniques, with the subsequent dissection of these models revealing novel insights
into complex biological phenomena.

Recent studies have shown convincingly that local chromatin state measurements
can accurately predict expression levels of genes on a genome-wide basis. Tippmann
et al. [174] designed a linear model to predict steady-state mRNA levels in mouse
embryonic stem cells based on just four predictors: 3 histone modifications (H3K36me3,
H3K4me2 and H3K27me3) and Pol-II occupancy. Remarkably, the linear model was
found to explain 84.6% of an estimated 91% maximal variance that could be explained
(as calculated through a detailed determination of noise). [174] An additional finding of
this study was that mRNA half-life and microRNA mediated transcript degradation
both had relatively minor influence on steady-state mRNA levels, with the authors
concluding that “the lion’s share of regulatory contribution is at the level of mRNA
synthesis and predictable from chromatin alone.” [174] An independent study used a
similar regression modelling approach to explore chromatin and transcription factor
data and again concluded that models built with histone modifications and chromatin
accessibility data were almost as accurate as those which also included binding data
for 12 transcription factors. [175]

A key study from the ENCODE consortium, that of Dong et al. [94], used ChIP-seq
datasets to predict gene expression in a range of cell types as measured by a variety of
experimental techniques. The authors here developed a two-stage model which first
attempts to classify each transcription start site (TSS) into an ‘on’ or ‘off’ state using a
powerful ensemble classifier technique called Random Forests (RF). The second stage
of the model used the same range of histone modifications as regressors in a simple
linear modelling framework to quantify predicted expression. This approach proved
very successful, producing a median Pearson correlation coefficient (PCC) between
predicted and empirical expression levels using 10-fold cross-validation of 0.83 across
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Figure 27: Highly accurate models of expression were built following Dong et al. A
scatterplot shows the strong correlation between predicted and observed expression levels per
transcript (left). Variable importance metrics are shown for the ”on/off” RF classification step
and subsequent linear regression of those loci classified as ”on” (right).

all cell lines and expression level technologies. [94] Additionally, this study highlighted
cap analysis of gene expression (CAGE) as the technology, relative to RNA-seq and
RNA-PET, which produced the most predictable expression response. CAGE uses
5
′ capped transcripts to generate short, specific tags which precisely identify TSS

positions as well as quantifying the abundance of a given transcript. [135,176]

These recent publications highlight the importance and relevance of advancing our
understanding of chromatin biology through a model-based approach. We can extend
this idea to the related domain of nuclear architecture, in the hope of understanding
the relationships between chromatin and higher order structure in the same way that
chromatin features have been related to transcriptional output.

4.2 extending dong et al.

We reimplemented the published modelling framework of Dong et al. [94] to replicate
their results and analyse the strengths and caveats of their approach.

We were able to reproduce the reported results and generate highly accurate models
of transcriptional output based on underlying chromatin features. An example is
shown for a predictive model of CAGE transcriptional output in the H1 hESC cell type
(Fig. 27). Note that not all variables used in Dong et al. [94] were made available for
this particular modelling scenario, however the Pearson correlation between predicted
and observed expression (0.87) is above the previous study’s median value (0.83), and
in-line with other models predicting CAGE data (median PCC ≈ 0.87). [94]

We also re-calculated measures of variable importance for this model of transcription
(Fig. 27). We note some small variations from the example model shown in Dong
et al. [94] which aimed to predict cytosolic CAGE levels recorded in K562 cells. This
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Figure 28: Comparison of a published two-step classification-regression model of transcrip-
tion with a simple linear regression model. Scatterplots of predicted against empirical log2
reads per million (RPM) expression values for the two-step model of Dong et al. [94] and simple
multiple linear regression are shown (left) along with frequency distributions of predicted
and observed expression levels (right). Scatterplots are annotated with Pearson’s correlation
coefficient (PCC) and the root mean squared error (RMSE); black trendlines describe y = x.
Overall correlations calculated with 10-fold cross-validation.

hints at some degree of some variability between cell type models, though broad
similarities also exist such as both models ranking DNase I hypersensitivity as a
relatively informative variable (Fig. 27).

When replicating the modelling approach of Dong et al. [94], we were surprised
to find that the two-step classification then regression (firstly assessing a gene as
‘on’ or ‘off’ and then predicting its expression level) added little additional accuracy
relative to a simple linear regression model (Fig. 28). Indeed, it appears the “best
bin“ technique (explained below, Section 4.2.1) had much greater impact on overall
predictive power than the addition of this classification step.

4.2.1 Bestbin method

An innovative element of the modelling approach used in Dong et al. [94] is the ‘bestbin’
method of matching chromatin measurements to the expression of a given TSS. This
strategy first bins normalised signal intensities into 40× 100 bp bins encompassing
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Figure 29: Average input feature profiles over transcription start sites. Mean ChIP-seq
signal over input control is shown for 6 factors in 6 human cell types used in Dong et al. [94].
Each is averaged genome-wide over GENCODE v7 hg19 defined TSS ±2 kb, and over whole
genes (grey shading). Ribbons shown 99% confidence intervals of the mean.

4 kb around the TSS, and adds an additional bin representing the remaining gene
body. Then the correlation between the signal of a given mark and the expression of
a TSS across all genes is measured and the bin producing the highest correlation is
designated as the ‘bestbin’. The normalised ChIP-seq signal intensity of this bestbin is
then used as an input feature for training the model of transcription. This strategy was
shown to increase model performance, measured in terms of the Pearson correlation
between predicted and observed expression, by 0.1 in the simple regression model, an
increase of almost 13% relative to simply taking the average value across all bins. [94]

The justification for such an approach hinges on the idea that the multitude of input
features (mostly histone modifications and DNA binding proteins) have a variety of
biological functions, and so the bestbin method is one way of learning these functions
in an automated and unbiased way. For example, the histone modification H3K36me3

is understood to be painted across exons that are being actively-transcribed, [174,177,178]

thus the genome-wide summary statistic that best captures this function is likely
the whole-gene measurement, rather than the level of H3k36me3 at a gene’s TSS or
upstream promoter. A re-analysis of ENCODE data used in Dong et al. [94] highlights
this kind of variability across input features (Fig. 29). Some features are clearly
enriched directly over the TSS (CTCF, DNase; Fig. 29) while others show enrichments
along the gene body (H3K36me3, H4K20me1; Fig. 29), and still others show well more
complex, asymmetrical ”shoulder” patterns (H3K27me3, H3K9ac; Fig. 29). Bestbin
will therefore, to some degree, capture these spatial relationships without a priori
specification.
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Figure 30: Variable importance metrics for each stage of our reimplementation of
a published model for predicting transcriptional output. Variable importance was
measured by decrease in Gini impurity for the RF classification step (Methods 2.6.2),
and by CAR R2 decomposition [179] for the linear regression step.

4.2.2 Model exploration

We attempted to improve the accuracy of predicted expression values produced by
Dong et al. [94] through increasing the number of informative regressors. While Dong
et al. [94] included broad coverage of different histone modifications, they did not
investigate the impact of higher order chromatin data. For this reason, we matched
the TSS positions used in Dong et al. [94] with previously-published genome-wide
replication timing ratios measured in BG02 ESCs. [146] This data is of a somewhat
different origin to the transcriptional data in this case (which was recorded in H1

hESC) but replication timing is thought to be largely conserved between cell types,
and in particular would be expected to be very similar between two ESC lines. [142]

We then used these values as an additional regressor in both the two-step classifica-
tion regression model and the simple linear model but saw no significant improvement
in either model’s accuracy (data not shown). Possible reasons for this include that the
data were relatively low-resolution (1 Mb) and derived from a imperfectly matched
cell line. However, since the existing model is already achieving such accurate results
that its original feature set must already be accounting for most of the maximal
explainable variance in gene expression given experimental and biological noise. With
this in mind, any additional regressors would be expected to yield diminishing returns.
Even so, on closer examination, the replication timing data appeared only slightly
more informative than the control ChIP-seq input measurements when evaluated with
relative importance metrics (Fig. 30), implying that large-scale chromatin domains
have relatively little influence on the expression of the genes resident within them.
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Figure 31: Random Forest predictions of FANTOM5 expression data. RF model predictions
are plotted against their empirical values. The marginal distributions of predicted and
empirical expression values are shown opposite their respective axes. Summary metrics of
Pearson’s correlation coefficient (PCC) and the root mean-squared error (RMSE) are also
shown (inset).

4.3 modelling fantom5 expression data

Using FANTOM5 CAGE data [133] and the approach established above (Section 4.2),
we next attempted to model gene expression at timepoint zero (t0) of a differentiation
timecourse of human H1 embryonic stem cells (H1 hESC) to CD34+ hematopoietic
stem cells. Applying this modelling strategy to a novel dataset will allow us to assess
the portability of the model design, as well as enabling further analysis of model
components such as the bestbin strategy.

We retrieved a number of genome-wide ChIP-seq datasets measured in H1 hESC
cells and produced by the ENCODE consortium [76] (Methods 2.10.2). These were
matched to transcript annotations to build an input feature set for use in building a
predictive model of transcriptional output.

Due to the finding that a two-step (classification–regression) approach added little
additional modelling accuracy (Fig. 28), we employed a single-step design using a
Random Forest (RF) regression model. [108,180] With a total of 14 predictors (10 histone
modifications, HDAC6, H2A.Z, DNase I and an input control, listed in Methods
2.10.2), we were able to build a highly accurate predictive model of transcriptional
output spanning around 11, 000 TSS (Fig. 31).
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Model predictions evaluated with 10-fold cross validation show a highly significant
correlation with measured CAGE levels (PCC = 0.845± 1× 10−4, p < 2× 10−15), and
the model is able to explain around 71% of the variance in the expression response
(for comparison a linear model resulted in PCC = 0.825± 3.2× 10−5, p < 2× 10−15).
This result is less impressive than that of Dong et al. [94] who achieved cross-validated
correlation coefficients of up to 0.9, but it is roughly equal to their median test set
correlation of 0.83. [94] Though the RMSEs of our predictions, when normalised by the
range of observed values, compare more favourably (0.11, compared with Dong et
al.’s: 0.14).

Our slightly lower predictive power could be explained by our streamlined model
design. Dong et al. [94] implemented a pseudocount optimisation step whereby an
additional count was added to each binned signal intensity prior to log transformation
to maximise expression correlation. In the model presented above, a fixed pseudocount
of 1 was used to avoid introducing an unwarranted positive bias towards higher
correlation. We confirmed that a two-step classification–regression design did not
improve our model performance metrics; indeed, the PCC and RMSE of a classification–
regression framework with this data showed a slight decrease in prediction accuracy
(PCC = 0.834± 0.007, RMSE = 1.77 when applied to the same test and training data
used in Fig. 31).

4.3.1 Bestbin location

We again implemented the previously-described ‘bestbin’ strategy [94] (Section 4.2.1)
to objectively select the most-correlated binned signal for each chromatin H1 hESC
mark. To explore the implications of this approach, we analysed the stability of chosen
bestbins by calculating them on 200 sets of 1000 randomly selected TSS samples, with
each sample representing approximately 8% of the complete dataset. Distributions of
chosen bestbins across these 200 sub-samples are shown as boxplots (Fig. 32).

We find that bestbin selections are often highly consistent across sub-samples,
indicating there are fairly static informative regions relative to a TSS for each chromatin
feature. Furthermore, the selected bestbins match known biological mechanisms; for
example the H3K36me3 bestbin is consistently the whole gene measurement (Fig. 32)
and this mark is known to be enriched in actively transcribed exons. [174,177,178] The
negative control variable (ChIP-seq input) shows no strong location bias, as expected
(Fig. 32). Other distributions are intriguing but less easily explained, such as those
features showing a tight distribution of informative regions slightly downstream of
the TSS (H3K9ac, H4Kme2/3 and H3K79me2; Fig. 32). In the case of H3K9ac, we note
that the selected bestbin appears to coincide with the highest summit of its bimodal
average profile over all TSS (shown in Fig. 29).
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Figure 32: Distributions of bestbin locations relative to the TSS. Bestbins were selected for
normalised ChIP-seq signal intensities for 10 histone marks, the H2A.Z histone variant, Hdac6

histone deacetylase, DNase hypersensitivity and a ChIP-seq input chromatin control. Bins
analysed extended 2 kb flanking the TSS, but more distal bins were never selected and hence
are not shown. ‘Whole gene‘ represents the averaged signal intensity from TSS to transcript
end site, as defined by Ensembl Genes v69.

4.4 modelling higher order chromatin

Accurate predictive modelling of transcription in a variety of cell types offered several
novel insights into the interrelationships between locus-level chromatin features and
transcriptional machinery, as well as advancing a quantitative explanation of the
degree to which correlated features are informative. It is of interest then, to test
whether this approach can be applied to other data, such as the reprocessed higher
order chromatin organisation data assembled in this work (Chapter 3).

Previous publications have identified several correlates which track compartment
eigenvector profiles to varying degrees, [9,16] yet to date these relationships have not
been quantitively investigated. The above-described modelling framework offers a
statistical approach towards understanding the drivers of these observed correlations.

4.4.1 Predictive model

We built Random Forest (RF) regression models (Methods 2.3.1) to predict compart-
ment eigenvector profiles genome-wide in three human cell types. Models were found
to have high predictive accuracy, with Pearson correlation between predicted and
observed compartment eigenvectors in the range of 0.75–0.82 (Fig. 33), comparable to
that achieved by Dong et al. [94] in the prediction of transcription.
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Figure 33: Compartment eigenvector model predictions are highly correlated with ob-
served values. Pearson correlation coefficient (PCC) and root mean-squared error (RMSE)
report the degree of success of the regression model, whereas accuracy (Acc.) and area under
the receiver operating characteristic (AUROC) give the classification accuracy of binarized
outcomes.

Our predictive models were also assessed in terms of classification performance,
i.e. did the model correctly assign each block to an A or B compartment. Instead of
training a classifier, thereby constructing a second model, we threshold our regression
predictions at 0 (Methods 2.3.2). We found our RF models achieved high classification
accuracy with ≥ 82% of all 1 Mb genomic bins correctly assigned in each cell type
(Fig. 33).

This predictive performance underlines the strong connection between locus-level
features and higher order chromatin structure previously noted by Lieberman-Aiden
et al. [9] Given such highly-predictive models can be generated, it is then of interest
to dissect said models in an attempt to understand the nature of this captured
relationship.

4.4.2 Cross-application

High predictive accuracy on cell type specific models could be the result of “overfit-
ting”. In machine-learning, overfitting refers to the point at which parameters are
being optimised to capture the random errors of a particular sample, on top of any
underlying relationship between inputs and predictions, thereby giving an inflated es-
timate of model performance which would not translate to another feature set with an
independent noise profile. [181,182] Commonly Random Forest models are thought not
to suffer from overfitting, but while it is true that this is not an issue when increasing
the size of a forest, the technique itself can indeed overfit, particularly in the instance
of fully-grown regression trees whose leaf nodes can contain a single case. [111]
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Figure 34: Models of higher order chromatin structure learned in one cell type can be
cross-applied to others. Each model, trained in one cell type, was applied to the chromatin
feature datasets from the other two cell types. (A) The GM12878 model achieved high accuracy
when applied to K562 features (PCC = 0.76), as did the reciprocal cross (PCC = 0.75). Inset
metrics are the same as those shown in Figure 33. (B) In each case, predictive accuracy
decreased on cross-application but there remains significant agreement between predicted and
empirical values.

To test if overfitting was responsible for our high modelling accuracy, we cross-
applied models learnt in one cell type to unseen input data from each of the other
two cell types under study. If predictive accuracy is a lot lower on unseen data, this
lends evidence to the idea that our models may overfit to their respective cell types.
Conversely, it could be the case that biologically-distinct mechanisms are in place that
differ between cell types, preventing a simple cross-application.

We found cross-application between cell types was possible and resulted in similarly-
high levels of accuracy to within cell-type cross-validation (Fig. 34). This gives good
evidence not only that these models are not overfitting to cell-type specific noise,
but also that there exist broad rules linking chromatin conformation and locus-level
features. Model performance under cross-application suggests that there are enough
commonalities for compartment profile predictions to transcend the cell-type specific
biology inherent to an embryonic stem cell or differentiated cell type.
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Figure 35: Genomic regions that vary across cell types are modelled less successfully than
static regions. Genome-wide compartment eigenvectors were partitioned into thirds ac-
cording to their median absolute deviation (MAD) across the three cell types under study
(Methods 2.4.1). This bar chart compares the accuracy of models fitted independently to each
third, according to the Pearson correlation coefficient (PCC) between predicted and observed
values.

4.4.3 Between-cell variability

Given much of the higher order chromatin organisation is conserved between the three
cell types used in this work (Fig. 10), a testable hypothesis is that these conserved
regions are drivers of cross-applicability between cell types. Under this hypothesis we
might also expect those genomic regions which vary most across cell types to be more
difficult to predict.

Consistent with this we found the most variable regions across cell types were the
most difficult to predict through our RF modelling framework (Fig. 35). In each cell
type, the third of the genome with the most consistent compartment eigenvectors
across cell types could then most accurately be modelled in each cell type, and
conversely the most variable third showed significantly depleted predictability (Fig.
35). This result suggests these variable regions could either be those which are noisiest,
where the eigenvector is least able to capture compartment structure, or where cell-
type specific biology is influencing compartment structure in ways not captured by
our input feature set and low resolution modelling pipeline. Results presented in
Section 3.6, showing that regions of variable structure are enriched for cell type specific
enhancers and transcription, is suggestive of this latter explanation.
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Figure 36: Variable importance per cell type specific model. Variable importance for each
Random Forest model was measured in terms of percentage increase in mean squared error
when permuted (Methods 2.3.1) and the top 10 ranking variables are shown.

4.4.4 Variable importance

Having built accurate predictive models, we next dissect the relative variable contribu-
tions made from our range of input features and compare these across cell types. An
overview of the top 10 most highly-ranked features in cell type specific models shows
some agreement but also notable differences between cell types (Fig. 36)

Only one input feature, H3k9me3, is present in the top 10 most important variables
of each model (Fig. 37). H3k9me3 is one of the few features to be negatively
correlated with compartment eigenvectors, hence offers orthogonal information to
the majority of other, positively-correlated input variables (Fig. 38; Section 4.4.5). Of
those important variables shared between two cell type models, H3k27me3 is also a
repressive mark and deposited by polycomb repressive complex 2 (PRC2) [183] while
H2A.Z is a histone variant again linked to polycomb-regulated genes and essential for
embryonic development. [184] Furthermore EZH2, the catalytic subunit of PRC2, [185] is
also included in the feature set and is highly ranked in the GM12878 cell type model
(Fig. 36). Other interrelated and important variables include MYC and MAX, which
are found in the top 10 influential variables in H1 hESC, and MXI1, found to be an
informative variable in GM12878. Recent results suggest MYC binds open chromatin as
a transcriptional amplifier in embryonic stem cells, [186,187] with MAX and MXI1 acting
as antagonistic co-regulators. [188] These biological relationships between variables may
help explain the observed differences between models: different representatives of
correlated clusters of input variables are likely being selected in each model (this is
explored in Section 4.4.5).

To assess the significance of observed intersections (Fig. 37), the variable selection
process could be modelled with, for example, a multivariate hypergeometric distri-
bution or via simulation. Simulation was used here for simplicity: each intersection
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was calculated under 10, 000 variables draws with uniform distribution and empirical
p-values were then calculated accordingly. Under the assumption that variables are
ranked independently in each cell type, drawing at least one variable in all three cell
types would be expected by chance (p = 0.6). Similarly, the overlaps between pairs
of cell types is within the range of expectation (probability of 7 or more variables ap-
pearing in exactly two sets: 0.39). Hence these data suggest the top 10 most influential
variables are not significantly more alike across the three cell-type specific models
than expected by chance, however 10 is an arbitrary cutoff, and many of the rankings
are based on small differences in variable importance, thus could be unstable between
multiple generations of stochastic RF models.

In addition to rankings, raw variable importance metrics can also be compared
between cell-type specific models (Fig. 39). Through this analysis we found that vari-
ables such as CTCF have a relatively small but highly consistent variable importance
across the three cell type specific models, whereas other features like ATF3 are highly
influential in one cell type but not the other two. Absolute differences in these figures
should not be over interpreted and will be affected to some degree by data quality,
eigenvector calculation and other sources of noise. Nevertheless there are observations
which may reflect biological phenomena, such as the higher relative importance of
P300 in both haematopoietic cell line models, potentially reflecting its activity as a
histone acetyl transferase that regulates haematopoiesis, [189] compared with the more
consistent influence of CTCF in each model, an insulator and transcription factor
widely known as a regulator of genome architecture (discussed in Section 1.2.3).
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Figure 38: Correlations of individual features with compartment eigenvector in the H1
hESC cell type. Two-dimensional kernel density estimates show the density of points in a
scatterplot of compartment eigenvector (x-axis) against each input feature individually (y-axes).
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4.4.5 Correlating input features

We have an a priori expectation of multicollinearity in our feature set, for example
between those that each broadly correlate with transcriptional activity (including
POL2, H3K36me3 and sequence GC content). To explore these relationships, we
performed unsupervised clustering of our feature sets in each cell type (Fig. 40).

We found pervasive multicollinearity across our feature sets, with the majority
of input variables in each model falling into a persistent ”active” cluster containing
regions with high DNase hypersensitivity, POL2 binding and histone modifications
H3K36me3 as well as GC content (Fig. 40).

Outliers are also present. H3K9me3, noted for high variable importance in each
model (Fig. 36) and the only feature ranked within the top 10 in each model (Fig. 37)
is a clear outgroup in the H1 hESC and GM12878 correlation heatmaps, and in K562

forms a stable cluster only with the P300 transcription factor (Fig. 40). This suggests
H3K9me3 is providing orthogonal information to many of the other input variables,
and likely explains its high variable importance.

4.5 technical considerations

4.5.1 Resolution

Thus far models were built at 1 Mb resolution, but if we are capturing true biological
relationships we would expect these to hold at higher or lower resolutions. To test
this, models trained at 1 Mb resolution were applied to feature sets binned at 100 kb,
an order of magnitude higher resolution.

Model accuracy when applied to higher resolution input features proved to be
similarly high, with empirical PCC being 88 to 95% as high as that at 1 Mb native
resolution (Fig. 41). We found that eigenvectors at higher resolution, beyond 100 kb,
do not necessarily reflect A/B compartmentalisation.

Note however, there is some indirect leakage between test and training set when
100 kb bins have been used in aggregate in learning the 1 Mb models. Nevertheless,
sustained accuracy is evidence that our models are not resolution-sensitive, and could
likely be applied to higher resolutions than the 1 Mb predominantly used in this work.

4.5.2 Other modelling approaches

Random Forest (RF) was a priori chosen as an appropriate and powerful modelling
tool for this work, but other methods could have been used and should be compared.
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Figure 40: Correlation heatmaps of the 35 features used to model compartment eigenvec-
tors. The Pearson correlation coefficient (PCC) of genome-wide 1 Mb bins of each feature
were pairwise correlated with each other. The features were also clustered using hierarchical
clustering. The significance of these clusters was determined through multi-scale bootstrap
resampling, with those clusters that were stable across different sizes of resampling deemed
significant (Methods 2.2.1). Such clusters are labelled with coloured blocks in heatmap
sidebars.
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Figure 41: Models trained at 1 Mb resolution can be applied to higher resolution datasets.
Despite having been trained on lower resolution training sets, the Random Forest models
generated can successfully predict compartment eigenvectors at higher resolution (100 kb, a
10× zoom).
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Figure 42: Comparison of Random Forest performance with other modelling approaches.
Heatmaps show the Pearson correlation coefficient between predicted and observed compart-
ment eigenvectors genome-wide for three regression techniques: multiple linear regression
(LM), Random Forest (RF) and partial least squares (PLS). Results are summarised in Table 4.

Table 4: Performance comparison of different modelling techniques. Comparison of mean
Pearson correlation coefficient between predicted and observed compartment eigenvectors for
three different modelling approaches: LM: linear regression; RF: Random Forest regression;
PLS: partial least squares regression. Correlations were averaged per cell type over three cell
types (cell type specific) and in the six possible crosses (cross-application) shown in Fig. 42.

LM RF PLS
Cell type specific 0.787 0.790 0.750

Cross-application 0.139 0.689 0.641

Here we compare our RF approach with two other options: multiple linear regression
and partial least squares regression (Methods 2.3.6).

Our results confirm RF as a suitable and powerful approach for modelling our
relationships of interest in this work (Fig. 42), with both the highest cell-type specific
performance (PCC between predicted and observed = 0.790) and on cross-applications
(mean PCC = 0.689).

Multiple linear regression assumes linear relationships between model parameters
and input features and allows for simple, normally-distributed errors. Surprisingly,
this simple approach is capable of accurate cell-type specific predictions (mean PCC
= 0.787; Table 4), likely due to the high raw correlation between the inputs and
dependent variable. However this simple approach fails to cross-apply between cell
types (mean PCC = 0.139; Table 4) indicating problems with overfitting. This can
be remedied through variable selection procedures, however a strength of the RF
approach is that this step is not necessary, and pre-selection of model variables may
result in a sub-optimal end result. [108]

Partial least squares regression is a technique that uses dimensionality reduction
to engineer a lower-dimension and orthogonal feature set. Hence this method is
well-suited to collinear inputs, such as the set of variables used in this work (e.g. Fig.
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Figure 43: Circle of correlations of variables compared with PLS axes. Model variables
are plotted against the first two components used in PLS regression models per cell type. Y
represents our compartment eigenvector.

40). As expected, PLS regression provides highly accurate cell type specific predictions
(mean PCC = 0.750; Table 4) and performs well during cross-application (mean PCC
= 0.641; Table 4), though in both cases produces slightly inferior results to RF models
(Fig. 42).

PLS uses a type of dimensionality reduction, which offers another way to explore
the inter-relationships between our feature set. Plotting input features against these
lower-dimension components can give a revealing insight beyond simple correlations
(e.g. Fig. 40). Figure 43 shows a ”circle of correlations”, where features are plotted
onto polar co-ordinates against the first two PLS components (Methods 2.3.6). Nearby
variables in the scatterplot are positively correlated, and the vector length from the
circle centre is proportional to the variable’s representation in the model. Negatively
correlated variables point in opposite directions while uncorrelated variables are
orthogonal to each other. [190] We therefore see the known multicollinearity represented
as groupings of overlapping variables in each cell type, with a smaller number of
orthogonal and negatively correlated variables in each cell type (Fig. 43).

4.5.3 Non-independence

As recognised through our use of hidden Markov models (Methods 1.1.3), eigenvector
values for consecutive bins along a chromosome are non-independent yet thus far
predictive models have not considered this inter-dependence.

This is for two reasons: firstly non independence could be thought of as an artefact
of bin-sizing (we have elected to use regular, fixed binning beneath the scale of
compartments themselves whereas another approach could use variable bin sizes, for
example per compartment, TAD or restriction fragment); secondly using information
of a bin’s surroundings may obscure by proxy the chromatin features which would
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otherwise prove predictive. As an example, knowing that bin xi−1 and bin xi+1 are in
compartment state A would allow us with high confidence to predict the state of bin
xi, but without learning anything of the region’s relationship with its encompassed
histone modifications and bound factors.

4.6 parsimonious models from expanded feature sets

Strongly predictive models can be useful tools to reason about a complex system,
however from a researcher’s perspective there also exists a trade-off between predictive
power and parsimony. Namely simpler models with fewer inputs may be more
interpretable and of wider utility, for example they could be applied to cell types with
less ChIP-seq data available than those used in this work. For this reason we explore
parsimonious models with reduced feature sets, with an aim to build simpler models
of chromatin state while retaining, if possible, similar levels of predictive accuracy.

On the other hand, the 35 variables used thus far as model inputs are not the
complete set available in each cell type, but only the subset of those assayed in all
three cell types under study. The ENCODE consortium has produced a significantly
greater number of datasets [76,79] in each cell type which have thus far gone unused.
Here we explore models of higher order chromatin structure, in some cases built from
over 100 variables, and then generate parsimonious models using optimal subsets
guided by statistical techniques that penalise model complexity.

4.6.1 Stepwise regression

Multiple linear regression is a simple and analytically well-described modelling
framework which is amenable to regularisation through a variety of methods. A
simple approach is to start with a complete model and serially remove and/or add
variables, then calculate a metric (here we use the Bayesian information criterion, BIC)
which weighs the the model likelihood against model complexity. This process is
iterated until the metric reaches a (local) minimum, thus creating a more parsimonious
model which retains predictive accuracy and should be less prone to overfitting.
Stepwise regression also aids interpretation by selecting representative features from
collinear clusters. [118] A detailed explanation of this feature selection procedure can
be found in Methods 2.3.4. It should be noted that despite its continued widespread
usage, several statistical issues have been identified with the stepwise procedure for
model selection. [119,120]

In terms of model performance alone, stepwise regression gives the highest pre-
dictive accuracy on a held-out validation set in each cell type specific model of
compartment eigenvector (Table 5), however it must be said that differences in model
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Table 5: Performance comparison of full and optimised RF and LM models. PCC between
predicted and empirical compartment eigenvectors is shown for a range of modelling sce-
narios, including multiple linear regression (LM) and Random Forest (RF) approaches. For
model selection, two methods are used: stepwise BIC-regularised linear models and LASSO
regression; in each case those same features were then also used in building a separate RF for
comparison.

GM12878 H1 hESC K562
n LM RF n LM RF n LM RF

All features 115 .836 .828 71 .744 .755 187 .811 .813

Matched subset 35 .827 .823 35 .740 .747 35 .796 .799

LASSO `1 23 .823 .836 23 .734 .750 39 .779 .811

Stepwise BIC 21 .840 .831 13 .746 .738 27 .819 .810

performance across all comparisons are modest. These results do show that even
expanded feature sets of up to 187 input features add little explanatory power beyond
that of much less complex models with 20 or fewer input variables (Table 5).

4.6.2 LASSO regression

A more modern technique for regularisation of linear models is the least absolute
shrinkage and selection operator (LASSO). In brief, the LASSO is a form of `1 regulari-
sation that penalises the sum of absolute values of standardised regression coefficients.
By penalising total absolute values, rather than squared values as in `2 regularisation,
coefficients can be shrunk to 0 thereby removing terms from the model. [111,121] Thus
LASSO combines the coefficient shrinkage of techniques like Ridge regression with a
type of feature selection as seen in stepwise regression. A more rigorous description
of this method is given in Methods 2.3.5.

Again we can perform a simplistic comparison of model performance using LASSO
regression and other techniques (Table 5). LASSO retrieves comparable numbers of
informative variables to the stepwise regression technique in each cell type, and again
removes the majority of input features from expanded sets as redundant or relatively
uninformative.

Of those variables with a non-zero coefficient at the optimally-selected tuning
parameter λ (Methods 2.3.5), the ten largest in each cell type are shown (Fig. 44).
Similarities can be observed with variable importance from previous 35 input models
(Fig. 37), including the large (negative) coefficient for EGR1 in the H1 hESC model
as well as that of P300 in K562 (Fig. 44). Also of note is that Zinc finger protein
143 (ZNF143) appears among the largest model coefficients in two of the three cases
(Fig. 44). Recently ZNF143 was found to be a novel chromatin looping factor which
connects promotors and cis-regulatory elements [191] and previous studies have found
it to be enriched over chromatin domain boundaries. [9,10] Here however, ZNF143 has a
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Figure 44: Ten largest LASSO coefficients in models derived from expanded feature sets.
Those coefficients with the largest absolute standardised value are plotted for each cell type
specific LASSO model.

negative coefficient in models of compartment eigenvector, indicating some additional
role in heterochromatin B compartments.

Of interest is the appearance of a group of factors known to collectively form
the heterodimeric activator protein-1 (AP-1), these include c-Fos, c-Jun and ATF1–3;
all are spread across the most highly-ranked variables in each model of chromatin
organisation (Fig. 44). The AP-1 complex has been shown to have DNA bending
properties, [192] and recently FOS and JUN members were associated with long-range
chromatin interactions [193] suggesting an under-explored role for this complex in
genome organisation.

4.6.3 Regularised Random Forest

Random Forest (RF) comparisons are included for comparison in Table 5 where
RF models were built using those features selected by procedures based on linear
regression. Thus the linear regression-based feature selection acts as a ”filter” method
for feature selection, fully independent of the RF learning algorithm. A more coherent
approach might be an ”embedded” method, where a regularisation procedure is
integrated with the learning algorithm. [194,195]

While RF is a much younger technique than linear models, a framework for Regu-
larised Random Forests (RRF) has recently been described [196] and implemented in
the R package RRF. [197] The RRF algorithm uses the idea that at each node in a tree,
unused variable should only be included if they offer a significant information gain
over those available variables which have already been used in the tree. This differs
from the standard RF algorithm where splitting decisions at each node are entirely
independent of each other (Methods 2.3.1).
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We found that this algorithm was unable to perform feature selection on our highly
collinear feature set, instead leaving full or almost full feature sets in each case (data not
shown) and so providing equal results to a standard RF model using expanded feature
sets (Table 5). Potentially this problem could be investigated using a rapidly-advancing
set of techniques known collectively as ”deep learning”. These cutting-edge machine
learning methods are capable of learning both a predictive model and concurrently
how input features should best be represented within this model, often using multiple
layers of connected neural networks (for reviews, see 198,199).
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5 CHROMAT IN DOMA IN BOUNDAR IES

5.1 introduction

A succession of studies have defined chromatin domains of different types, for example:
A and B chromosome compartments; [9] topologically associating domains (TADs); [10]

contact and loop domains; [13] physical domains; [31,32] and others. [42] The existence of
these domains necessitates ”boundary regions” either between consecutive domains
or bookending more separated domains, however the functional relevance of said
boundary regions is still open to debate.

In their study of topological domains, Dixon et al. [10] identified average enrichments
over TAD boundary regions in both human and mouse for various features including
CTCF and PolII. Boundaries were also enriched for signs of active transcription,
such as with the histone modification H3k36me3. [10] These results, coupled with an
observable enrichment for promoters at domain boundaries, have lead to the theory
that boundaries may act as an additional layer of transcriptional control. [40] However
an alternative theory is that if chromatin domains represent co-regulatory regions as
is widely thought, [40,41,200] boundaries themselves could be mere side-effects and as
such of limited biological interest.

An obvious experiment to resolve these opposing theories would be to delete a
predicted boundary region and test for local changes in both contacts and expression.
Such an experiment was performed on a region of the human X-chromosome contain-
ing the genes encoding the dosage-compensation long non-coding RNAs Xist and Tsix,
which are separated by a TAD boundary. [29] This study found that while histone modi-
fications within the body of a TAD could be removed without affecting overall domain
structure, deletion of a boundary did have an effect and led to increased intradomain
contacts. [29] Surprisingly however, the two domains did not completely merge, lending
credence to the alternative theory that TADs may be centrally constrained, rather than
by their borders. [29]

A recent experiment used CRISPR genome editing to link TAD boundary changes
with limb development disorders, [201] indicating that boundary changes could provide
an underlying explanation for pathogenic non-coding structural variants. [202] Similarly,
domain boundaries on C. elegans X-chromosomes were found to be weakened following
the disruption of condensin binding sites. [33] Together these studies suggest a complex
scenario whereby TAD boundaries are an important structural feature, yet do not fully
explain domain partitioning.
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chromatin domain boundaries

Many questions remain about chromatin boundaries. For example, are the enrich-
ments reported in Dixon et al. [10] persistent across cell types and how do they compare
across organisation strata, such as compartments and TADs? Through computational
analysis of the set of boundaries re-called from published datasets, we can investigate
these questions and probe boundary enrichments across a broad array of locus-level
chromatin features.

5.2 boundary analysis

The mammalian genome is organized into topologically associating domains (TADs),
predominantly self-interacting chromatin domains, with boundary regions reportedly
associated with pronounced peaks and troughs of particular features within 500 kb of
the predicted boundary. [10] Exploration of this phenomenon using a set of 24 mouse
ESC chromatin features (and a smaller number of human ESC features) revealed
enrichment peaks of CTCF, H3K4me3 and H3K36me3, as well as a pronounced dip in
H3K9me3, suggesting that high levels of transcription may contribute to boundary
formation. [10] However, the peaks and dips of these features lacked any estimates of
statistical significance. It was also unclear whether other features might show unusual
patterns in TAD boundary regions, and how the constellation of features involved
might vary between cell types. Moreover, the features associated with boundaries
separating A and B compartments calculated from Hi-C eigenvectors have not been
studied to our knowledge. The datasets assembled here, consisting of 35 matched
chromatin features across three cell types, allow us to conduct the first comparative
study of the constituents of human TAD and compartment boundary regions.

5.2.1 TAD boundaries

We derived TAD boundaries from uniformly reprocessed Hi-C data (Chapter 3)
according to established methods (see Methods 2.1.5) for all three cell types under
study. We then sought evidence for significantly enriched or depleted features at TAD
boundary regions using a conservative approach (a nonparametric statistical test and
Bonferroni multiple testing correction, see Methods 2.5.1).

Our findings confirmed the previously reported peaks (CTCF and POL2) and dip
(H3K9me3) in ESC data, but also revealed substantial heterogeneity between cell
types and some novel boundary features. CTCF binding was found enriched at TAD
boundaries across all cell types, but other features, including H3K27me3 and H3K4me3,
show dramatic peaks of enrichment in H1 hESC cells that are not seen consistently
in other cell types (Fig. 45). Although the dip in H3K9me3 at TAD boundaries is
seen in all cell types, the extent of the depletion varies and is weakest in H1 hESC
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Figure 45: TAD boundary enrichments and depletions. 35 features were averaged over 1

Mb windows centred on TAD boundaries genome-wide (25× 40 kb bins). Ribbons represent
95% confidence intervals of the mean at each position.
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cells. We also note an apparent enrichment of H4K20me1 over TAD boundaries in H1

hESC cells, a modification previously implicated in chromatin compaction. [203] Finally
we observe consistent increases in GC content at TAD boundaries, at a scale that is
difficult to explain in terms of those much smaller GC-rich features such as binding
motifs or CpG islands (Fig. 45). The statistical significance of these enrichments and
depletions is considered in Section 5.2.3.

5.2.2 Compartment boundaries

Where neighbouring genomic regions occupy contrasting A and B nuclear compart-
ments, the disparity implies the presence of a boundary region. We identified putative
compartment boundaries using an HMM to infer the state sequence of A/B com-
partments across the genome based on observed principal component eigenvectors
(Section 3.4.1). Analogously to the TAD boundary analysis we then sought significant
enrichments or depletions in our set of chromatin features over these compartment
boundaries.

Compartment boundaries display similar spectra of enrichments to previously
studied TAD boundaries [10] but at lower resolution, reflecting the different scales of
these levels of organisation (Fig. 46). Peaks associated with active promoters (POL2,
TAF1, H3K9ac) are again evident. Enrichments of CTCF and YY1 are again seen at
compartment boundaries, as they were for TAD boundaries, in each cell type under
study. In addition, compartment boundaries show enrichments of H3K79me2, which is
known to play a critical role in cellular reprogramming. [204] This histone modification
has also recently been shown to mark the borders of small (hundreds of bp) regions of
open chromatin, [205] hinting at similarities in chromatin boundaries at very different
scales.

Certain features show intriguing contrasts between cell types. For example, the
histone variant H2A.Z shows a clear enrichment over K562 compartment boundaries,
but not the other two cell types (Fig. 46). Compartment boundaries also show
enrichment for the cohesin complex subunit RAD21 in the two hematopoietic cell
types, and cohesin is another factor implicated in modulating nuclear architecture in
partnership with CTCF. [38] Various other enrichments of modest effect size can also
be seen (Fig. 46). In contrast with TAD boundaries, the composition of compartment
boundaries appears least complex in H1 hESC, relative to the other two cell types (cf.
Fig. 46).

These enrichments over compartment boundaries offer the opportunity to inves-
tigate the effects of the HMM boundary calling method used in this work with the
previously-used simple thresholding approach. [9] To this end we compared that subset
of boundaries retained through HMM calling (for details see Section 3.4.1), with those
that would have been called through simple thresholding when the compartment
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Figure 46: Compartment boundary enrichments and depletions. 35 features were averaged
over 3 Mb windows centred on compartment boundaries genome-wide (30× 100 kb bins).
Ribbons represent 95% confidence intervals of the mean at each position.
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Figure 47: Compartment boundary candidates filtered through HMM calling show reduced
feature enrichments. Boundary feature enrichments are compared for boundaries called via
the HMM method described in this work (discussed in Section 3.4.1), and boundaries omitted
through the HMM method but present if a simple thresholding approach is used to delimit
compartment domains. Boundary profiles shown as in Figure 46.

eigenvector changes sign. We find that boundary enrichments are largely reduced or
absent in this latter set of boundaries (Fig. 47). This result suggests that the HMM
boundary calling method is filtering noisy compartment boundary calls which would
otherwise be present through a simple thresholding approach, however we note that
the absence of boundary enrichment does not necessarily preclude the presence of a
compartment boundary.

5.2.3 Significance testing of boundary associations

Domain boundary associations with other chromatin features are most frequently
presented through the statistics-free ”average-o-grams” similar to those presented
in this work (Figs. 45, 46). We then went on to perform a quantitative test of the
associations between these features with compartment and TAD boundaries. In brief,
we compare the values for each normalised signal directly over a boundary bin with
those peripheral bins in each ≈ 1 Mb window (for TADs). We then perform a non-
parametric, rank-based significance test to look for statistically significant enriched or
depletions of each feature. Details of this procedure are given in Methods 2.5.1.

Results of this significance testing, along with selected boundary profiles, are
presented in Figure 48. Overall we find that compartment and TAD boundaries are
associated with overlapping spectra of highly significant enrichments and depletions
of chromatin features across cell types. Across all tests (Fig. 48), we frequently
find boundary enrichments for DNA binding proteins implicated in chromosome
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Figure 48: Compartment and TAD boundary enrichment summary in three human cell
types. (A) Selected profiles for locus-level features are shown for compartment boundaries
(CTCF, H2A.Z and H3K27me3) and TAD boundaries (CTCF, H3K9me3 and POL2), as a
mean normalized ChIP-seq signal relative to input chromatin per bin (±1 standard error).
TAD boundaries were examined over 40 kb bins over the 1 Mb flanking each boundary;
compartment boundaries were examined in 100 kb bins over 3 Mb. (B) The significance of
enrichment or depletion (− log10(p) two-tailed Mann–Whitney test) of a feature was calculated
as the boundary bin relative to the ten most peripheral bins (five either side). Points are scaled
by the absolute mean difference in signal over the boundary relative to the mean of peripheral
bins.
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architecture (e.g. CTCF, YY1, RAD21), but also note broad enrichments for classes of
input features associated with active transcription (e.g. POL2, TBP, H3K9ac).

Reflecting their different scales, we find enrichment and depletion profiles typically
spanning regions of up to 500 kb for TAD boundaries but those over compartment
boundaries often span more than a megabase (Fig. 48). We expect part of the reason for
this discrepancy is the resolutions at which domains were called: TADS are resolved
to 40 kb bins while compartment boundaries fall between megabase-sized bins. A
further consideration is that larger numbers of TAD boundaries were called in the
H1 hESC cell line, due its more deeply-sequenced Hi-C library (Section 3.4.2), giving
greater statistical power to detect enrichments thus resulting in smaller p-values (Fig.
48). The lower resolution megabase bins used in compartment calling do not suffer
from this issue.

5.2.4 CTCF and YY1

Significant boundary enrichments for both CTCF and YY1 are evident in all cell
types at both compartment and TAD boundaries (Fig. 48), which is intriguing given
the evidence that YY1 and CTCF cooperate to affect long distance interactions. [206]

Co-binding of CTCF with YY1 has also been shown to identify a subset of highly
conserved CTCF sites. [207] This colocation may also therefore be a contributing factor
in the establishment of TAD boundaries, which appear to be broadly conserved across
mammals. [10]

To test this, we split our sets of TAD boundaries into those possessing ChiP-
seq peaks (region peaks as called by the ENCODE data processing pipeline [76]) for
CTCF, YY1, both CTCF and YY1 (overlapping peaks) and neither. We then tested
each boundary subset for genome-wide enrichments of the other features in our
dataset (Fig. 49). Unexpectedly, we found that those boundaries marked by YY1 but
without overlapping CTCF peaks were generally most strongly-enriched for other
features in our dataset. This result potentially highlights YY1 as an under-appreciated
contributor to boundary demarcation, particularly relative to the well-studied CTCF.
We also found that boundaries lacking both CTCF and YY1 peaks showed instead
the strongest enrichments for RAD21 in each cell type (Fig. 49), reinforcing previous
findings that describe the distinct influences of CTCF and cohesin in organising
chromatin structure. [38,60,208]

5.2.5 Repeats

Dixon et al. [10] identified short interspersed element (SINE) repeats as being enriched
over TAD boundaries and suggested roles for these repeats in altering genome organi-
sation, in line with prior evidence. [10,209] For example, SINE elements are thought to
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Figure 49: Distinct enrichments of CTCF and YY1 boundaries. The significance of TAD
boundary enrichments and depletions are shown (as in Fig. 48) for boundaries split into
classes based on the presence or absence of ChIP-seq peaks within boundary bins. CTCF
and YY1 groups are those boundaries with at least one ENCODE region peak [76] for their
respective features, while CTCF + YY1 is the group of boundaries which had one or more
overlapping peaks for these two factors. Boundaries in the ”none” group had neither a CTCF
or YY1 region peak called (but can still be enriched for their respective features in terms of
raw signal).
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be responsible for spreading CTCF binding sites through mammalian genomes during
evolution. [210] Analysis of recent high-resolution Hi-C data again reported a SINE B2

link with CTCF loops in mice, [13] and examples have been reported of human genes
whose expression has been altered by CTCF sites inserted through Alu repeats. [211]

Together these results suggest repeats could be a key component in the makeup of
domain boundaries.

To investigate this, we used the RepeatMasker [212] software package to call repeat
classes and families in the hg19 and mm10 genome assemblies. Counts for each anno-
tated feature were then averaged over boundaries as described previously (Methods
2.5).

At the level of repeat class, we corroborate the findings of Dixon et al. [10] that the
majority of repeat classes show no enrichment or depletion at TAD boundaries, and
we find that this also holds for compartment boundaries (Fig. 50). A notable exception
is the short interspersed element (SINE) repeat class which appears to be enriched
at TAD boundaries in each cell type. Testing the significance of this observed peak
confirms this to be the case, with SINEs significantly enriched at TAD boundaries
in each cell type, and borderline significant enrichments can also be observed at
compartment boundaries (Fig. 51).

We also find long interspersed elements (LINEs) are significantly depleted over
TAD boundaries in two cell types, and borderline significant in the third, though with
modest effect sizes in each case (Figs. 50, 51). DNA repeats appear to be enriched
at both boundary types (Fig. 50), however these observations do not surpass our
significance threshold (α = 0.05) after multiple testing correction (Fig. 51).

Repeat classes can be broken into smaller repeat families. Dixon et al. [10] reported
that the Alu repeat family of the SINE repeat class (or SINE B2 in mouse) is enriched
over TAD boundaries. Again we can reproduce this finding and extend the analysis to
compartment boundaries, where we do not see a significant enrichment for Alu repeat
elements (Fig. 52). Surprisingly almost all other repeat families show no significant
departure from their expected levels over TAD or compartment boundaries.

5.3 tad boundary prediction

We have shown TAD and compartment domain boundaries to be reliably and signif-
icantly marked by a variety of features. Compartment boundaries are successfully
predicted as a side-effect of modelling the continuous compartment profile eigenvector
(Section 4.4), reflecting global patterns of transcriptional activation and repression,
however a related measure of activity and repression, or other comparable profile
we might want to predict, does not exist for TADs. Instead then, in this section we
attempt to predict TAD boundaries within a class-balanced classification framework.
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boundaries. As per Figure 51 but for a more specific repeat classification.
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5.3 tad boundary prediction

5.3.1 Learning boundary classification

Results presented in this thesis describe the spectra of chromatin marks over TAD
boundaries (Figs. 45, 48), thus it is of interested to test if we can build a predictive
model (in the manner of Chapter 4) that can call boundary regions from these marks
alone. Such a model, if successful, could have broad utility in domain prediction in
metazoan organisms where Hi-C data is not available.

A straightforward approach to this modelling task is to build a supervised classifier
that learns the associations between two classes of genomic region: those labelled TAD
boundaries and those which are not. To this end, we again turn to a Random Forest
(RF) model, due to its many attractive properties discussed previously (Methods 2.3.1).
Our input feature set is made up of the same 35 matched features used in models of
compartment eigenvector (Section 4.4), with the addition of Alu repeat element counts
(Section 5.2.5). Domain calls are those produced by the Dixon et al. [10] TAD calling
algorithm (Methods 2.1.5), therefore TAD boundaries were resolved to 40 kb bins. We
class TAD boundary bins as boundary true positives (TP), and select matched bins
500 kb upstream as boundary true negatives (TN) for our training set.

To build parsimonious and accurate models (as discussed in Section 4.6), we used
the AUC-RF algorithm. [128] This is a form of stepwise model selection which optimises
feature subset selection relative to the area under the receiver operating characteristic
(AUROC), a metric which captures both the specificity and sensitivity of a classifier.
The AUC-RF algorithm was applied to a training set of 80% of boundaries per cell type,
with predictions assessed on out-of-bag (OOB) data as each forest was constructed.
Selected models were then applied to the remaining held-out test set of 20% of
TAD boundaries, with their matched non-boundary bins (full details are given in
Methods 2.6).

Predictive performance of these models is shown as ROC plots (Fig. 54) and in
each case an AUROC of around 0.67–0.71 was achieved. In practice, this means that
each classifier has around a 70% probability of ranking a random boundary region
more highly than a random non-boundary region. [213] According to a commonly-
used AUROC rule of thumb, this performance falls between the ranges of ”poor” to
”moderate” classification accuracy. [214]

Despite this sub-optimal classification accuracy, it is still of interest to analyse the
variable importances in each cell type model. Strikingly we find that CTCF stands
out as the most informative variable in each classifier by some margin (Fig. 55). This
is in agreement with our results that CTCF showed among the highest and most
consistent enrichments at TAD boundaries (Fig. 48). RAD21 is also highly ranked in
each case and this ties in with our previous results suggesting orthogonal boundary
enrichments for either CTCF or RAD21 (Section 5.2.4). Surprisingly YY1 does not
feature as highly ranked in any model despite our observed consistent enrichments at
TAD boundaries (Fig. 48). In fact YY1 was pruned from the optimal H1 hESC and
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Figure 55: Variable importance for boundary classification Random Forest models. The
ten most important variables in each boundary classification model are shown and ranked by
their variable importance as defined by mean decrease in Gini impurity (Methods 2.6.2).

GM12878 models by the AUC-RF algorithm due to its low variable importance (data
not shown). This could be due to a redundancy between information provided by YY1

and the CTCF variable as, for example, co-binding of YY1 and CTCF is thought to
occur at sites of long-range chromatin interactions. [206]

5.4 metatad boundaries

Our collaborators in the Pombo lab (Max Delbrück Center, Berlin) proposed the
concept of ”metaTADs”: sequential aggregations of adjacent and strongly-interacting
TADs that form a hierarchy of domain organisation covering each chromosome.

MetaTADs are constructed simply by performing constrained hierarchical clustering
based on inter-domain contacts. That is, those two neighbour TADs that have the
largest number of inter-TAD contacts are linked to form a metaTAD and this process
is recursed until all TADs on a chromosome are joined into a single tree which fully
describes the hierarchical nature of domain organisation (manuscript under revision).

My contribution to this work was to explore these newly-described metaTAD
structures and perform boundary analysis as was done with TADs and compartments
(Section 5.2). A testable hypothesis, for example, is that boundaries of larger metaTAD
structures could display greater enrichments for boundary-defining features.

5.4.1 MetaTAD boundary comparison

Due to the manner in which metaTADs were constructed by our collaborators, by
sequential aggregation of TADs (Methods 2.7), boundary comparisons between TADs
and metaTADs are not completely straightforward. Every metaTAD boundary is, at a
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Figure 56: Calibration of metaTAD size selection bounds. As the lower bound on metaTAD
size is increased, the proportion of all TAD boundaries which are also metaTAD boundaries
decreases.

lower level, also a TAD boundary hence for a meaningful comparison we compared
only a subset of metaTAD boundaries. Selection of this threshold involved a trade-off
between maintaining a sufficient sample size of metaTADs and minimising the overlap
between metaTAD and TAD boundaries to increase the discriminative power of our
comparison (Fig. 56).

From the calibration plot (Fig. 56), a lower bound metaTAD size cut-off of 10 Mb
was selected for comparison with TAD boundaries. This left a reasonable sample
size of 263 metaTAD boundaries, while reducing the overlap with the set of all
TAD boundaries to approximately 5% (Fig. 56). We also used an upper bound for
size selection, based on observations by our collaborators that interactions between
metaTADs larger than around 40 Mb were no higher than expected background signal
(data not shown). In practice, almost all boundaries making up metaTADs larger than 10
Mb are also present in those larger than 40 Mb, but as hierarchical clustering continued
up to the whole chromosome level, this upper bound may exclude a small number
of edge-case peripheral TADs which aggregated into chromosome-wide metaTADs
without evidence of heightened intra-TAD interactions.

Next a comparison between metaTAD boundaries for metaTAD size (s) in the range
10 Mb < s < 40 Mb was performed. Our collaborators generated several ChIP-seq
datasets, including for CTCF and three PolII variants, as well as expression data in the
form of CAGE (Methods 2.7.2). We calculated the average profiles of each of these
features over regions surrounding the set of all metaTAD and TAD boundaries (Fig.
57). These average profiles show heightened enrichment for PolII variants, CTCF
and DNase, with non-overlapping 95% confidence intervals of the mean over the
boundary bin. Profiles also suggest increased enrichments of gene density and the
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Figure 57: Large metaTADs show greater enrichments than TADs for an array of boundary
features. Genome-wide profiles of epigenomic features and gene densities averaged over all
TAD and metaTAD (10 – 40 Mb) boundaries (ribbons show 95% confidence intervals of the
mean).

histone modification H3K27me3 at metaTAD boundaries relative to TAD boundaries
(Fig. 57). The co-incidence of metaTAD boundaries and lamina associated domains
(LADs) is explored further in Section 5.4.2.

Increased enrichment at metaTAD boundaries relative to TAD boundaries lends
evidence to the functional importance of metaTADs, and suggests boundaries become
increasingly well-demarcated at higher levels of organisation. However, if this is a
genuine biological phenomenon, we may expect the trend not just to be observable in
a comparison between two selected sets, but to increase monotonically as we ascended
the metaTAD hierarchy from TADs to chromosomes.

To test this, we reran the metaTAD boundary analysis (Fig. 57) but at a range of
metaTAD size cut-offs. Results of this analysis are shown in Figure 58. Generally we
find increasing enrichments in metaTAD boundaries relative to TAD bounds through
the range of lower bound cutoffs from 0 to 20 Mb, possibly with a slight decreased ef-
fect size at the highest cutoff of 30 Mb, where the sample size of boundaries decreases
to just 62 (Fig. 58). This analysis strengthens the evidence for heightened functional
enrichment of metaTAD boundaries (Figs. 57, 58) and suggests the metaTAD aggrega-
tion procedure is capturing boundaries of increasing strength, in terms of enrichment
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of boundary associated features, through the metaTAD hierarchy. Though the nature
and significance of these boundary enrichments are currently open to debate, there
exist precedents where greater enrichments over boundaries have been invoked as
evidence that a novel TAD calling algorithm outperforms previous efforts. [42,215]

5.4.2 Lamina associated domains

In the previous section we report a colocation of metaTAD boundaries and lamina
associated domains (LADs), and at a greater level than that observed with smaller
TADs (Fig. 57). This hints at an association between metaTADs and LADs which
merits further investigation.

High resolution LAD data in mouse embryonic stem cells were retrieved from Peric-
Hupkes et al. [139] in the form of continuous measures of lamin-B1 association produced
by the DamID technique, known to reflect proximity to the nuclear lamin. [216] This
measure of lamina association was then processed in windows around each metaTAD
and TAD boundary, and profiles were combined to form a heatmap (Fig. 59).
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Figure 59: MetaTAD boundaries align with those of lamina associated domains. Heatmaps
of LaminB1 association microarray probe intensity values over MetaTAD boundaries (from
domains of size 10 – 40 Mb) and TAD boundaries, are displayed beside examples of circularly-
permuted boundaries (Methods 2.7.3). Profiles are shown ±450 kb from each boundary.
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Figure 60: MetaTAD boundaries co-occur with LAD boundaries more often than is ex-
pected by chance. Heatmaps of lamina association over MetaTAD boundaries are shown as
in Figure 59. Sidebars labelled O and E reflect observed and expected proportions of metaTAD
/ LAD boundary overlaps (Methods 2.7.3).

Boundaries were seriated in order to separate out those that coincide with a LAD
boundary, indicated by a transition in lamina association values. This was achieved
by fitting a linear regression model across the lamina association profile of each
boundary, then using a coefficient cutoff heuristic to select those that represent a
boundary transition (Methods 2.7.3). Using this approach, we found a markedly large
proportion of metaTAD boundaries (43%) co-occur at a LAD boundary (Fig. 59). The
same comparison using TAD boundaries found a coincidence of just 12%. However
LADs are large domains and there were over 5, 000 TADs called using these Hi-C data
by our collaborators, thus in absolute numbers of boundaries this is still represents a
large overlap.

To test the significance of these observations, we apply a permutation-based sta-
tistical test where our observed coincidences are compared with those produced by
1, 000 circular (per-chromosome) permutations (Methods 2.7.3). We found that the
metaTAD and LAD boundary coincidence is around a 2.7-fold increase above null
expectation (observed: 42.6%; expected: 15.8%; empirical p-value: p < 1× 10−4; Fig.
60). Meanwhile TAD boundaries were found to have a smaller, yet still significant, 1.2-
fold increase in coincidence with LAD boundaries relative to a null model (observed:
11.8%; expected: 9.5%; empirical p-value: p < 1× 10−4; Fig. 60).

As with other enrichments (e.g. Fig. 58), we went on to verify that this result was
not specific to the choice of boundary size cutoff. Recall that as metaTADs are derived
from TADs, selecting metaTADs within a size range is a trade-off between minimising
overlap between boundaries assigned to TADs and metaTADs to enable more powerful
comparison, while retaining a sufficiently large sample size of metaTAD boundaries

102



5.4 metatad boundaries

1 − 40 Mb 5 − 40 Mb 10 − 40 Mb 20 − 40 Mb

−4
50

 kb

+4
50

 kb

−4
50

 kb

+4
50

 kb

−4
50

 kb

+4
50

 kb

−4
50

 kb

+4
50

 kb

M
et

aT
A

D
 b

ou
nd

ar
ie

s

−1 0 1

Lamin association

Figure 61: MetaTAD–LAD coincidence increases at higher levels of the metaTAD hierarchy.
Heatmaps of lamina association over MetaTAD boundaries are shown as in Figure 59. Panels
show the size selection cutoffs for metaTAD domains considered in each case.

(Section 5.4.1). In the case of LAD–metaTAD coincidence, we again find this result is
insensitive to the selection of domain size cutoff, and indeed that there is evidence for
an increasing proportion of co-occurrence as we ascend the metaTAD hierarchy (Fig.
61).

This result suggests again that metaTADs seems to offer useful perspectives onto
higher order genome organisation. In this case, it appears TADs will often neatly
aggregate within LADs and together these constitute what we observe as a metaTAD.

5.4.3 Boundaries over a time series

For the first time, our collaborator’s applied the Hi-C technique over a differentiation
time course from mouse embryonic stem cells, to neural progenitors and finally fully-
differentiated neuron cells. Successive expression measures were also taken alongside
this Hi-C data in the form of CAGE data, produced by the FANTOM5 consortium. [133]
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Figure 62: Observed enrichments persist over a time series. CAGE-defined active TSS
(CTSS) were counted per 50 kb bin across each TAD and MetaTAD (10 – 40 Mb) boundary
and averaged (ribbons show 95% confidence intervals of the mean). Gene densities refer to
mean counts of annotated genes per bin, with an overlap of at least 250 bp (Methods 2.7.2).

Together these datasets offer a unique perspective onto how higher order genome
organisation varies with expression during differentiation.

Collaborators explored changes in both the overall tree structure between time-
points, and aggregate expression changes between TADs and metaTADs at successive
timepoints. They identified rewiring events in the metaTAD tree over the timecourse,
and found corresponding changes in expression (data not shown). Given metaTAD
structures appear to differ and matched CAGE data exists for each timepoint, it was
of interest to test how observed boundary enrichments for gene expression (Figs. 57,
58) might vary over this timecourse.

We find actively-transcribed CAGE-defined TSS (CTSS) to be consistently enriched
over the shifting boundaries through the differentiation timecourse (Fig. 62). We
coupled this with a static measure of gene density in order to distinguish expression
changes from genic overlap, however both series show similar patterns so it does not
seem that boundary expression varies at a global scale over this timecourse. At each
timepoint, peak heights over boundary bins suggest modestly stronger enrichments at
metaTAD boundaries relative to TAD boundaries, as seen with other features (Fig. 57).

104



5.5 other boundaries

5.5 other boundaries

5.5.1 Giemsa bands

A recent analysis of Hi-C datasets examined the hierarchy of nuclear compartment
and TAD organisation in human HeLa cells across the cell cycle. They found that
interphase and metaphase chromatin structure are highly distinct, such that the
TADs and compartments observed here (e.g. Fig. 19) are effectively abolished in
metaphase. [64] This raises the question of how the structural organisation seen in (and
often shared between) interphase cells is inherited through the cell cycle.

Human Giemsa metaphase banding (G-band) pattern data have been integrated
with the human genome assembly, and although such data are widely used, they
are also necessarily of low resolution. [140] These G-band patterns are constant over
human cell types at metaphase, but all traces of interphase higher order structure were
reported to be absent at metaphase. [64] We would therefore not necessarily expect an
agreement between G-bands, labelled in metaphase cells, and nuclear compartments,
called from cell populations which were mostly in interphase.

We examined the genome wide concordance of interphase compartment boundaries
with metaphase G-band boundaries, relative to an expected distribution derived by
permutation (Methods 2.8). We found a significant, though modest, excess of com-
partment boundaries within close proximity of G-band boundaries, such that 13.9%
of compartment boundaries are within 500 kb of a G-band boundary (expectation =
10.5%, K-S test: D = 0.076, p < 3× 10−12). This is seen for compartment boundaries
calculated for all three cell types independently (a full comparison for GM12878 is
shown in Figure 63).

The genome wide overlap of compartment A and B regions with particular G-band
classes is nonrandom, and suggests a greater correspondence than that of simple
boundary distances. Regions assigned to compartment A are significantly over-
represented within lighter staining (especially G-negative) bands, while compartment
B regions are over-represented in the most darkly staining (G-positive) bands (Fig. 64).
Approximately 40% of the genome jointly occupies interphase compartment A as well
as the lightly-stained gneg or gpos25 metaphase G-bands, or occupies the interphase
B compartment in addition to the well-stained gpos75 or gpos100 bands at metaphase
(Fig. 64). Similar trends are seen across all three cell types as expected given the high
correlations seen in A/B compartment profiles between cell types (data not shown).

This agreement is not wholly unexpected given the known characteristics of G-
negative and G-positive bands, with contrasting gene density, GC content and replica-
tion timing [140] that is strongly reminiscent of the contrasts between interphase A and
B compartments. [9] Despite showing an association, these data agree with experimen-
tal evidence that many domain boundaries are not well preserved between interphase
and metaphase. However there is evidence for relationships between the broad struc-
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Figure 63: Genome-wide agreement between Giemsa bands and A/B compartments. G-
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chromosomes. Data for cell type GM12878 is shown.
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between G-bands and A/B compartments is broken down into the five levels of Giemsa stain.
A compartments largely match gneg staining, while gpos75 and gpos100 are enriched in B
compartments.

tural categories of compartments and G-bands which may reflect similarities in the
degree of compaction throughout the cell cycle.
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6 LOCAL CHROMAT IN CONFORMAT ION

6.1 introduction

The Hi-C assay provides a genome-wide overview of chromatin conformation, however
the broad scope of this all-versus-all assay places inherent limits on the resolution
at which individual interactions can be analysed. For a closer look at chromatin
conformation within a region of interest, alternative C-based assays such as 3C, 4C
and 5C can be employed alongside classical microscopy techniques like FISH.

Here I discuss a collaborative project within the IGMM (with members of Prof.
Robert Hill’s laboratory) involving the use of 4C and 5C data to zoom in on a
particularly well-studied locus involved in limb development: the Sonic hedgehog
(Shh) gene and its distal cis-regulatory element named ZRS.

6.2 the shh locus

Anterior-posterior patterning in the developing limb is regulated in mammals by the
Sonic hedgehog morphogen, encoded by the Shh gene. [217] Specifically, the Shh gene
is expressed within a confined region of developing limb buds named the ”zone of
polarising activity” (ZPA). Its expression within this region is known to be regulated
by a well-studied enhancer, the ”ZPA regulatory sequence” or ZRS. [218] ZRS is located
almost 1 Mb downstream of its target Shh promoter in humans (nearer 800 kb in
mouse), and is located in intronic regions of another gene, LMBR1 (Fig. 65). [218,219]

Expression of Shh within the ZPA is tightly controlled, initiating in mice at develop-
mental stage E9.5 and terminating at E12.5. [220] As such, single point mutations and
short insertions within the ZRS enhancer have been linked to various limb deformities,
including pre- and post-axial polydactyly. [217,219,221] For example, a heritable point
mutation in the ZRS enhancer is the cause of polydactyly in ”Hemingway cats”, a
large group of domestic cats with extra toes that reside at the former home of Ernest
Hemingway. [221,222]

To further investigate the dynamics of the Shh locus, our collaborators in the Hill
lab (IGMM, University of Edinburgh) have developed a model system which allows
inducible Shh expression in a non-expressing 14fp cell line derived from the developing
murine limb bud. Treatment of this cell line with the histone deacetylase inhibitor
trichostatin A (TSA) then leads to detectable Shh expression, and increased levels
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Figure 65: ZRS–Shh contacts occur within a stable TAD. An approximately 1 Mb region of
the mouse genome is shown below a matched section of a Hi-C contact map (derived from
previously published data [10]). A clear TAD can be identified spanning from the Shh gene to
the ZRS, dashed lines show TAD boundaries called by Dixon et al. [10]

of the histone activation mark H3K27ac at the ZRS (unpublished data). However, the
question remains whether this TSA treatment is fundamentally altering local chromatin
structure—that is, bringing together the ZRS enhancer with its target Shh promoter—or
whether ZRS and Shh are in contact in both the active and non-expressing cell lines in
a poised state. Previous 3D-FISH experiments have shown the ZRS–Shh contact to be
associated with Shh expression in the developing limb bud, though it is not detected
in every cell. [218,220] Instead only a proportion of cells in the ZPA are Shh-expressing at
a given time, and it is thought that the ZRS–Shh colocalisation is most likely to occur
within these expressing cells. [220]

My part in this collaboration was to analyse 3C-seq (also known as 4C), then 5C
data generated by our collaborators over the Shh–ZRS region in mouse. Experimental
design and wet-lab procedures were performed by members of the Hill lab.

6.3 4c of the zrs

4C experiments were performed by collaborators using the ZRS region as a bait
sequence, or ”viewpoint”, such that ZRS contacts were measured with all other
HindIII restriction fragments genome-wide. Thus the 4C technique allows us to assay
changes in the ZRS–Shh contact relative to the totality of other chromatin interactions
involving ZRS.

The 4C experimental design involved two control experiments. The first used
cells derived from whole limb bud at developmental stage E11.5, thereby containing
some Shh expressing cells as a positive control. The negative control was a mouse
mandibular cell line (MD) which does not express Shh. Expression status in each case
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was experimentally verified (data not shown). For the perturbation experiment, 4C was
performed in the Shh-inducible 14fp cell line, both with and without trichostatin A
(TSA) treatment.

6.3.1 4C pipeline

The 4C analysis pipeline, starting from de-multiplexed sequencing reads (fastq files)
as produced by our in-house sequencing facilities using an Ion Torrent Ion ProtonTM

sequencer, can be summarised as:

1. Trim known bait sequence using cutadapt, [223] select only those reads where
known viewpoint-associated sequence was present

2. Map reads to the mouse reference genome (build mm9) using bowtie2 [97] with
the very-sensitive flag

3. Filter alignments with a MAPQ score > 30 to select for high-confidence align-
ments using samtools [162]

4. Normalise contacts using the r3cseq R package and assign FDR q-values to
interactions, with the aim of finding those significantly over-represented relative
to expectation (Methods 2.11)

6.3.2 ZRS–Shh interaction following TSA treatment

The results of a comparison between 4C experiments in TSA treated and untreated
14fp cells is shown in Figure 66. In it we see a striking and highly significant ZRS–
SHH contact in the treated sample (q-value < 5× 10−10), with a weaker but still
significant contact in the adjacent restriction fragment in the untreated sample (q-value
< 5× 10−5).

Comparing these results with controls shows a detectable and significant ZRS–
Shh contact in each case, regardless of Shh expression status (FDR q-value < 0.05);
Fig. 67). This is in agreement with previous evidence suggesting ZRS contacts Shh
constitutively. [224] However the TSA– 14fp cell line also shows a large number of
off-target contacts, potentially indicating a lack of specificity in the ZRS–Shh contact,
or a range of alternative contacts occurring throughout the cell population.

Unpublished experimental results show that following TSA treatment, Shh expres-
sion increases over a period of 24 hours until it reaches that seen in the limb, this
steady increase is also mirrored by an increase in the level of H3K27ac histone mark
over ZRS (Hill lab, personal communication). For this reason, 4C of ZRS was also per-
formed a full 24 hours after TSA treatment, as well as the 18 hour treatment analysed
above (e.g. Fig. 67). These two experiments give largely similar results (Fig. 68),
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Figure 66: TSA treatment induces a strong ZRS–Shh interaction. 4C interactions are shown
as edges from source node (ZRS enhancer bait fragment) to targets along an approximately 2

Mb region of chromosome 5. Edge width is proportional to the number of interactions, only
highly significant interactions are shown (FDR q-value < 5× 10−5; Methods 2.11.2). Zoomed
region shows the number of interactions of the bait region with Shh in both untreated and
TSA treated (after 24h) samples. Each green–blue rectangle is a restriction fragment, coloured
by FDR q-value indicating the significance of the interaction above expected levels.
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Controls
MD TSA+
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Figure 67: TSA treatment in 14fp cells results in a more specific ZRS–Shh contact. Arc
plots are shown for two control experiments: the Shh expressing E11.5 whole limb bud and
non-expressing mandibular cell line (MD). Also shown is the 14fp inducible cell line, with and
without treatment with trichostatin A (TSA) after 18 hours. Arcs link significant interactions
(q-value < 0.05) and arc widths are proportional to the normalised number of reads recorded
for the interaction (Methods 2.11).

and the ZRS–Shh interaction frequency is highly significant in each case, particularly
24 hours after treatment (TSA- : q < 1.5× 10−5; TSA+18h : q < 1.4× 10−8; TSA+24h :
q < 7.8× 10−35).

Additional FISH data produced by our collaborators shows approximately equal
levels of compaction in this region in both TSA treated and untreated 14fp cells (data
not shown). This information in combination with the 4C results reported here (Fig.
66) support a hypothesis that as these two loci border a TAD (Fig. 65), they frequently
contact each other regardless of Shh expression state. It could also be the case that
TSA treatment brings about a more specific, functional ZRS–Shh contact in 14fp cells
which is coupled with expression of the Shh gene.

6.3.3 Assay diagnostics

The 4C protocol used by our collaborators in this work was that of Stadhouders
et al. [147] In it, the authors advise some statistical tests to ensure the quality of the
experiment results. Among these were: [147]

1. Sequencing reads should be found to have high duplication rates of 95% or
greater.

2. 50% or more of all reads should map to the chromosome on which the bait
region is located.

Additionally, the 4C procedure was adapted for specific in-house sequencing instru-
ments (an Ion Torrent Ion ProtonTM sequencer as opposed to IlluminaTM technology)
and as such required diagnostics to confirm the experimental data was accurate.
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Figure 68: A stable ZRS–Shh interaction is coupled with reduced extraneous contacts. Arc
plots are shown for an untreated, non-expressing 14fp cell population (TSA-) and following
TSA treatment after 18 and 24 hours. Arcs link significant interactions (q-value < 0.05) and
arc widths are proportional to the normalised number of reads recorded for the interaction
(Methods 2.11).
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Table 6: 4C sequencing library statistics. 4C experiments are summarised as total number of
reads in each experiment and the percentage of those reads labelled ”duplicates”. Note in 4C
these duplicates are not artifactual and instead result from large numbers of contacts nearby
to the viewpoint.

14fp TSA-
14fp TSA+

E11.5 MD TSA+
18h 24h

Reads (million) 10.0 8.8 24.2 10.7 12.2
Duplicated (%) 62.8 74.2 84.4 80.2 72.8
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Figure 69: The bait chromosome is enriched for 4C sequencing reads. Chromosome 5 is
visibly enriched for 4C reads as it contains the ZRS bait region (or viewpoint). Experiments
include treated and untreated 14fp cells (TSA-, TSA+18h, TSA+24h) as well as positive control
(E11.5) and negative control (MD TSA+).

Sequence duplication levels were measured with FastQC [225] and are shown in Table
6. We find slightly lower than expected levels of duplication, ranging from 62.8% to
84.4%. This suggests that while the assay does appear to be working, there may be
extraneous noise and non-bait interactions in the sequencing library.

Unfortunately we found the proportion of reads mapped to the bait region chro-
mosome, chromosome 5 in this case, fell below the prescribed level of 50%. Across
4C experiments, we find instead that between approximately 10–20% of all reads
mapped to the bait chromosome (Fig. 69), except for the 18 hour TSA+ treatment
experiment which shows only around 7%. While this is still a clear enrichment over
non-bait chromosomes, relative to their lengths, it suggests the assay results suffer
from either increased trans-contact noise or decreased cis-contact enrichment around
the bait region.

Lower than expected levels of both sequence duplication and bait chromosome
enrichment suggest loss of signal around the bait region itself. This is the area where
we expect both very high levels of duplication (identical restriction fragment pairings
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between nearby genomic locations) and where a majority of all sequencing reads
should originate, driving the overall chromosome enrichment seen in Figure 69. The
precise reason for the discrepancy is unclear but suggests the results of the assays
performed by collaborators may have a lower signal-to-noise ratio than has previously
been achievable in 4C experiments. [147] Potentially the signal-to-noise ratio could
be improved by utilising a double cross-linking procedure such as that used in Lin
et al. [226]

6.4 polymer modelling

Chromosome conformation capture assays permit the exploration of genome organi-
sation, but such data are commonly analysed using one or two-dimensional represen-
tations. A growing set of algorithms looks instead to rebuild the three-dimensional
trajectory of a chromatin fibre, using Hi-C or 5C data as input (e.g. 227–234). Intu-
itively, in each method the interaction frequency between two regions is idealised as
inversely proportional to their physical distance (and adjusted according to various
other constraints). Where these methods differ is in their approaches to performing
this spatial transformation, and in solving the subsequent optimisation problem. We
chose the AutoChrom3D method [232] for use in this work (described in Section 6.4.1) as
the algorithm can accept 5C input and model polymers at high resolutions of up to 8

kb.

6.4.1 AutoChrom3D method

The procedure implemented in AutoChrom3D can be summarised as: [232]

1. The chromatin fibre is represented as beads-on-a-string, with Nbeads = d L
Re

(where L is the length of the region and R the resolution)

2. A local compaction parameter is calculated using a sliding window of each 50

adjacent beads (intra-window contacts are averaged and compared to those over
the whole region under study)

3. Interaction frequency between beads of a given genomic distance is modelled as
a Poisson-distributed random variable and noisy or unstable contacts, considered
in the context of neighbouring beads, are filtered

4. This filtered set of interaction frequencies are then normalised using the previously-
calculated compaction parameter to give an Nbeads × Nbeads matrix of interaction
strengths
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6.4 polymer modelling

Table 7: Measurement distances between ZRS and Shh in each inferred 3D structure. Dis-
tances are given in arbitrary units. Shh spans two beads of the polymer model, hence two
distances are calculated in each case (d1, d2). RMSD is the minimised root mean squared
deviation between the two structures and is given as a relative unitless quantity. The radius of
gyration (gyradius) is also shown.

Distance
RMSD

Gyradius (µm)
TSA- TSA+ TSA- TSA+

88fp
d1 5.4 5.1

1.701 0.244 0.244d2 4.1 3.9

MD
d1 6.2 3.3

2.377 0.217 0.205d2 4.8 2.0

5. Interaction strength is converted to spatial distance through two linear transfor-
mations based on experimental observations of nuclear occupancy and regional
flexibility [20]

6. Cartesian co-ordinates are then calculated via non-linear constrained optimisa-
tion of pairwise spatial distances using LINGO [235]

6.4.2 Modelling the Shh region with 5C

5C data was generated by our collaborators over the same ZRS–Shh region as was
assayed with 4C (Fig. 65; Section 6.3) with the aim of developing a multi-point
perspective on local chromatin conformation beyond that available from 4C data.

We used this 5C experimental data in combination with the AutoChrom3D three-
dimensional inference algorithm [232] in an attempt to compare polymer trajectories in
TSA treated and untreated 88fp mouse cells, a similar and complimentary cell line to
that used in earlier 4C experiments (14fp). As a control, 5C was also performed on
mandibular (MD) cells, with and without TSA treatment, which do not express Shh.
Prior to structural modelling, the my5C program was used to generate normalised 5C
interaction frequencies. [236]

We find that TSA treatment of 88fp cells does appear to slightly reduce the distance
between Shh and ZRS in inferred 3D structures (Fig. 70), however this difference is
overshadowed—to our surprise—by that observed in the non-expressing MD cell line.
This latter mandibular cell line undergoes a large structural transition which brings
the Shh gene and ZRS into close proximity. Measurements between these elements for
each structure are shown in Table 7.

We also report a greater overall structural shift following TSA treatment in the MD
cell line, with an RMSD between the two structures of 2.377 arbitrary units, relative to
1.701 between TSA+ and TSA- 88fp cells. The radius of gyration, unchanged in 88fp,
is also decreased in the MD cell line following TSA treatment, indicating the region
becomes more compact following TSA treatment (Table 7).
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Figure 70: Inferred polymer trajectories of the ZRS–Shh region following TSA treatment
in two cell lines. 3D structures are shown for 5C experiments assaying the region around
Shh (red) and ZRS (blue) in an Shh-expressing limb bud cell line (88fp) and a non-expressing
mandibular cell line (MD). Labelled measurements are given in Table 7. Structures were
predicted by AutoChrom3D [232] using 210× 8 kb beads per polymer.
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6.4.3 Repeat simulations

We have shown what appears to be a structural shift in the ZRS–Shh locus by 3D
modelling predictions (Section 6.4.2). It is of interest to assess the stability and
reproducibility of these results through repeat simulations of the polymer trajectory.
At this point it is unclear whether the ZRS–Shh bound state represents a firm consensus
over the cell population, or an alternative structure with similar optimisation energy
to that of the non-contacting state.

We re-ran simulations of the 3D chromatin fibre in the ZRS–Shh region a total of
five times (Fig. 71). In each case, the algorithm generates the known ZRS–Shh TAD as
a compacted domain bookended by the two loci under study. This sanity check shows
that the results are broadly compatible with our a priori expectation of the region’s
structure given the 2D heatmap representation of 5C data (Fig. 65).

Repeat simulations indeed appear to recreate the induced ZRS–Shh contact in the
mandibular cell line (MD) following TSA treatment (Fig. 71). This is again surprising,
as the MD cell lines do not express Shh and so were included as a negative control,
with no expected changes in local chromatin structure following TSA treatment. In
repeat simulations of the 88fp cell line, a close analogue of the 14fp cell line used in
4C, we see relatively little change in distance between Shh and ZRS (Fig. 71).

We quantified these distances by measuring from the single bead containing ZRS to
the two beads which overlap the Shh gene (Fig. 72). While these are not biological
replicates, just repeat simulations, we find the distance shift in MD cells is statistically
significant at the level of α = 0.05 for both bead distances (Mann-Whitney: d1 : p <

0.012, d2 : p < 0.012). Distances in the 88fp cell line were not significantly different
following TSA treatment (Fig. 72).

Qualitatively, there could be some observable structural dynamics caused by TSA
treatment in 88fp cells. It appears potentially that part of the Shh–ZRS TAD becomes
more loosely-packed at the ZRS side. This can be seen most clearly in two of the five
simulations of the TSA treated 88fp polymer models (Fig. 73). Given the function
of TSA as a histone deacetylase inhibitor, and unpublished results showing it causes
an increase in H3K27 acetylation over the ZRS, we speculate that additional acetyl
groups around this locus could be causing greater repulsion between histones leading
to a less-compacted structure. Potentially then, the ZRS is transitioning to a more
accessible state despite no change in its physical distance relative to Shh.

The main result, that TSA treatment induces a Shh–ZRS contact in mandibular cell
lines but not in limb bud, is difficult to explain and runs contrary to our expectations.
4C experiments performed over the same region reported ZRS–Shh contacts (Fig. 68)
but polymer models using 5C found instead that these two loci remain relatively
separated with or without TSA treatment (though still much closer than expected
relative to their genomic distance; Fig. 70). One explanation for this could be the
filtering method used by AutoChrom3D (Section 6.4.1). Highly improbably contacts are
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Figure 71: Repeat simulations of 3D polymer trajectories in the ZRS–Shh region. 3D
structures are shown for 5C experiments assaying the region around Shh (red) and ZRS (green)
in an Shh-expressing limb bud cell line (88fp) and a non-expressing mandibular cell line (MD).
Structures were aligned as whole molecules to the uppermost replicate in each column.
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Figure 72: ZRS–Shh distance measurements from repeated 3D polymer simulations. Mea-
surements were taken from 5 replicate 3D simulations (shown in Figure 71). Distances are
given in arbitrary units. Shh spans two beads of the polymer model, hence two distances are
calculated in each case (d1, d2).
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Figure 73: Polymer models showing partial TAD decompaction following TSA treatment.
Two of the simulations from Figure 71 are shown here with additional annotation. In the TSA
treated 14fp samples (TSA+) there is potentially evidence for a looser packing of the chromatin
around the ZRS (dark green).
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filtered before structural prediction to prevent errors or artefacts leading to aberrant
structures. In this case, a genuine instance of long-range cis-regulation may end up
being down-weighted or removed before polymer modelling. Alternatively this may
be an example of where, as has been noted at high-resolution, the results of 5C as
formaldehyde cross-linking efficiencies cannot be interpreted as spatial distances. [69]

Additional follow-up experiments are underway to further explore the dynamics in
this region.
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7 DISCUSS ION

7.1 modelling higher order chromatin organisation

Prior to the results presented in this thesis, much of the research into computational
modelling of chromatin has been focused either on learning functional chromatin
states from histone modifications and transcription factors (e.g. 76,86,88,93,237–242),
spanning small regions on the order of hundreds of basepairs, or alternatively on the
inference of the overall three-dimensional chromatin fibre trajectory based on confor-
mation data (e.g. 227–234,243). In this work we attempt an intermediate approach, in
which we use locus-level chromatin information to model higher order characteristics
of nuclear architecture, such as chromosomal compartments and topological domains.

Our data show that accurate predictions of Hi-C derived chromosome compartment
eigenvectors using locus-level chromatin features alone are entirely achievable (Section
4.4). Generalisation across cell types further suggests that chromosome compartments
could be inferred for those cell types without any available Hi-C data but with available
ChIP-seq for a handful of chromatin features. For example, the NIH Roadmap
Epigenomics project has generated histone modification data in hundreds of cell lines,
tissues and developmental stages. [173,244] If the novel models in this work were adapted
to use matched inputs, this would allow comprehensive comparisons of inferred
chromosome compartments across a diverse range of conditions and cell types. In the
same vein, chromosome compartments are known to be related to and recapitulate
other aspects of higher order chromatin organisation, including replication timing
domains, nuclear lamina associated domains and nucleolus association domains. [1,9,172]

We therefore suggest a similar modelling approach could prove successful for each
of these domains of interest. An exciting idea is that an integrative model capable of
identifying these LADs and NADs could forward this information to a subsequent
three-dimensional reconstruction algorithm, which could then use this information to
generate a comprehensive, in situ perspective on nuclear architecture.

We had less success with the prediction of TAD boundaries (Section 5.3.1). One
reason for this is that the TAD calling algorithm used in this work [10] (Methods 2.1.5),
though a published and widely used method, produces observably flawed domain
calls in some contexts. In addition the sensitivity of this method is proportional to
the sample sequencing depth, which varied across our three human Hi-C datasets.
Another consideration is that we resolved TAD domains to 40 kb bins, far removed
from the approximately 15 basepair CTCF motifs which can generate physical domains.
Indeed, given the recent release of some very-deeply-sequenced Hi-C datasets, [13] an
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improved method of predicting domains might start from individual ChIP-seq peaks
and consider pairs of correctly-orientated CTCF motifs. In addition, any predictive
model of such domains would do well to consider the hierarchical nature of chromatin
organisation (exemplified by metaTADs, Section 5.4) rather than seeking simple linear
discretisation of chromatin fibre into non-overlapping domains. Finally, we note that
an accurate predictive model of lower levels of domain organisation, be they TADs or
smaller physical domains, could likely recapitulate, on aggregate, broader domains
such as compartments and metaTADs, culminating in a multi-scale model of nuclear
architecture from the levels of kilobases up to entire chromosomes.

7.2 domain boundaries: functional or incidental?

Chromatin domains have been described at multiple scales, from 5 Mb chromosome
compartments [9] down to 185 kb contact domains [13] in human cells. Across all do-
mains, many questions remain about how they are constructed and maintained. Two
competing ideas are that boundary elements, akin to the classic chromatin insulators,
block intra-domain contacts and the spread of heterochromatin and hence create chro-
matin domains; however, another suggestion is that boundary regions are rather less
important and in fact an unavoidable consequence of adjacent self-interacting domains,
which are perhaps instead held together through internal enhancer–promoter interac-
tions and other contacts. The importance of boundary elements has implications for
the re-establishment process of domains during the cell cycle, for example, where it has
been shown that domains are entirely absent during mitosis but then re-established in
early G1 phase through an as-yet-unknown mechanism. [64,224] If boundary elements
bring about domains, this may hint that key boundary-binding factors are retained
through mitosis, else restored through sequence motifs. The alternative, rebuild-
ing domains through internal contacts, would require a highly-reproducible and
deterministic mechanism of reconnecting specific functional interactions in sequence.

In favour of functional boundary elements, both knockdown of CTCF [38] and
deletion of a specific boundary element [29] have been shown to increase inter-TAD
contacts, suggesting boundaries do indeed contribute to domain delineation. In this
thesis we report an array of boundary enrichments and depletions (Section 5.2), which
at minimum suggests some directed biological process is in effect at boundaries.
Nonetheless not all observed boundary enrichments and depletions are expected
to have a detectable function; it has been shown for example that removal of the
H3K27me3 mark had no effect on domain boundaries. [29] One potential functional
consequence of boundaries could be that genes positioned adjacent to or over a domain
boundary might be most amenable to dynamic regulation, for example by associating
or disassociating from the nuclear lamina. Enrichments for gene promoters have been
noted at domain boundaries in this work (e.g. Section 5.4) and in previous studies. [10]
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Alternatively, this boundary enrichment could be due to promoter–promoter looping
inducing domain boundaries. [40,54,245]

The link between chromatin domain boundaries and transcription deserves addi-
tional consideration. Many of the boundary enrichments we report in this work are
related to transcriptional activity, such as POL2, H3K36me3 and H3K9ac (Section 5.2),
and as just discussed, boundaries are also enriched for gene promoters. Combined
these results hint at a functional relationship between domain boundaries and tran-
scriptional machinery, but the precise nature of this relationship remains unclear. A
biomechanical explanation could be that, in such cases where boundaries are formed
from chromatin loops, a region of active transcription along with local histone acetyla-
tion would enable sufficient flexibility of the chromatin fibre to allow a loop hinge
to form. However a study of chromatin domains over the CFTR locus found that
TAD boundaries co-occurring with promoters were present across multiple cell types
regardless of transcriptional state. [246] Another study found that both transcribed and
non-transcribed promoters are enriched at domain boundaries in Drosophila, [32] and so
suggested gene density rather than transcriptional status could be a driver of domain
boundary formation.

The incidental boundary hypothesis is supported by data showing that deletion of
specific boundary elements, while increasing intra-TAD interactions, is insufficient
to cause adjacent domains to completely merge, [29] suggesting the presence of other
factors mediating domain stability. In addition, the majority of CTCF binding sites—
currently thought to be the principal architects of domain boundaries—fall within
TADs rather than at their boundaries (approximately 85% of human CTCF sites are
non-boundary [10]). This strongly suggests CTCF binding alone is insufficient to bring
about a domain boundary. Further it has been shown that the majority of enhancer–
promoter contacts are tissue invariant, [224] hence if functioning as anchors of structural
domains, these constitutive contacts could account for the high levels of domain
conservation reported previously [9,10,13,142] and in this work (Chapter 3).

As is the case with many biological phenomena, the question of whether boundary
regions or internal contacts are responsible for chromatin domains is reductive, and it
seems likely that both boundary insulation and intra-TAD contacts work together to
maintain chromatin domains.

7.3 domain evolution

In this work we find an array of chromatin features that, on average, are statistically
associated or excluded from TAD or compartment boundaries (Section 5.2). Among
these are features with a long history of studies implicating them in chromatin
organisation, including CTCF and cohesin subunit RAD21. We also report enrichments
for Alu repeat elements (Section 5.2.5) but no other repeat classes. Alu repeats and
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CTCF are linked by evidence that CTCF binding sites have in the past been dispersed
through waves of retrotransposon expansion. [210,247] This suggests a model for the
evolution of topological domains, whereby purifying selection removes those inserted
CTCF sites which disrupt desirable regulatory environments, while those which bring-
about efficient ”regulon” structures are favoured. Newly-released comparative Hi-C
and CTCF datasets [30] offer an opportunity to investigate this proposed evolutionary
model.

7.4 on causality

Throughout this thesis we have probed correlative relationships, including those
between chromatin features and either expression (Section 4.2), higher order chro-
matin structure (Section 4.4), or domain boundaries (Section 5.3). However even the
most predictive correlations make no comment on the underlying chain of causality.
Whether genome organisation is a cause or consequence of the functions of underlying
genetic elements remains an open question. [40]

Two different approaches could be used to address the causality question. A
standard rejoinder is to design wet-lab experiments, for example extending Hi-C
studies to perturbation or differentiation time courses, such as that performed by
collaborators in Chapter 5. However, another approach is to first develop theoretical
models which, under simulation, recapitulate observed data, and then to use these
models to generate testable hypotheses about the effects of specific perturbations. This
latter approach is exemplified in a study by Giorgetti et al. [243] where the authors
applied physical polymer modelling to deconvolute population-level 5C data into
single-cell conformations. The model suggests that population-level averages are
explained by transient contacts in each cell, rather than persistent loops. Subsequently
these models were able to accurately predict the effects of a genetic deletion of a CTCF
site separating the Tsix and Xist TADs. [243]

The models built in this thesis could also be applied to predicting the effects of ex-
perimental perturbations. For example, an experiment decreasing the tri-methylation
of H3K9, perhaps through down-regulation of SETDB1 or SV39H1, might be expected
to lead to heterochromatic regions becoming more permissive and allow the tran-
scription of marked tandem repeat sequences. [248] Our models further suggest the
effect would be most pronounced in K562 cells (Section 4.4.4). A previous experi-
ment analysed the effects of losing H3K9me3 in SETDB1 knockout mice and found
increased expression of a number of endogenous retroviruses, [249] but whether these
expression changes were also coupled with alterations in chromosome compartment
was not tested. Performing such an experiment over a number of timepoints could
help to establish whether transcriptional machinery drives genomic regions to an
active compartment or vice versa.
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7.5 insights into genome organisation

Overall our results agree with a functional model of genome architecture whereby a
majority of the genome is arranged into large static compartments (Section 3.3), be they
Lamina associated, nucleolus associated or central and accessible chromatin. Indeed, it
seems plausible that such large, constitutive anchor points may be enough to generate
a significant amount of concordance in nuclear architecture between cell types. [224]

These broad similarities are coupled with local structural changes in different cell lines
(Section 3.6, Chapter 6), allowing cell type specific regulation of loci through ”looping
out”, detachment from the nuclear lamina and other conceivable mechanisms of
structural variation. Whether these local changes are driven by DNA-binding proteins
and chromatin remodellers or by functional contacts such as enhancer–promoter
interactions remains unclear.

7.6 summary

Work presented in this thesis began with the collection and uniform reprocessing
of publicly-available genome-wide Hi-C datasets (Chapter 3). While many studies
present only their own novel data, we demonstrated the utility in making use of that
which is already openly-available. We compared this chromosome conformation data
across three human cell types of diverse origin (human embryonic stem cell H1 hESC,
transformed lymphoblastoid cell line GM12878 and the chronic myelogenous leukemic
line K562), and found strong conservation of higher order chromatin structure. Where
we found regions of variable structure between cell types, these were enriched for cell
type specific enhancer and transcriptional activity, and also showed dramatic changes
in their long-range contact profiles. These results demonstrate the close relationship
between genome structure and function across three human cell types.

In Chapter 4, we reproduced and extended a predictive model of transcriptional
output, before returning to our reprocessed Hi-C data to employ a similar machine
learning and model dissection paradigm. Our models of compartment eigenvectors
showed high predictive accuracy and in doing so learned general associative rules
between locus-level chromatin features and chromosome compartments. Probing
variable importance within these models revealed some differences consistent with the
biology of the cell type in which a model was learned, whereas other dissimilarities
appeared to be the result of collinear clusters within our feature space (Section 4.4).

We also examine boundary composition across cell types and at varying levels
of higher order chromatin structure, including TADs, chromosome compartments
and those of a newly-proposed layer linking the two: metaTADs (Chapter 5). Led
by these observed enrichments and depletions, we report modest success with the
prediction of TAD boundaries in the absence of Hi-C. Higher-resolution chromatin
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conformation capture data and improved domain calling algorithms will undoubtedly
enable more powerful boundary-predictive models in the near future, which in turn
could allow broad comparisons of inferred higher order chromatin structure without
the application of costly and time-consuming genome-wide C-methods.

In summary, we show that integrative modelling of large chromatin dataset collec-
tions can generate useful insights into nuclear architecture and seed testable hypothe-
ses for further study. As this thesis neared completion, another study was published
on the prediction of chromosome compartments; [250] while just a month earlier, a
separate publication reported a predictive model of TAD boundaries built from histone
modifications. [251] These very recent studies, those presented throughout this thesis,
and others no doubt soon to emerge, are proving machine learning and statistical
analyses to be powerful and vital apparatus for advancing our understanding of
higher order chromatin organisation.
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Table A1: Gm12878 functional enrichments in regions of variable structure. FE: fold enrichment; FDR:
false discovery rate.

Category Term Count % FE p-value FDR
GOTERM CC FAT GO:0005882 intermediate filament 36 4.20 4.90 6.42E-15 8.95E-12

GOTERM CC FAT GO:0045111 intermediate filament cytoskeleton 36 4.20 4.79 1.35E-14 1.87E-11

SP PIR KEYWORDS keratin 31 3.62 5.64 1.72E-14 2.47E-11

INTERPRO IPR007951:PMG 11 1.28 25.11 9.80E-14 1.56E-10
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Table A2: H1 hESC functional enrichments in regions of variable structure. FE: fold enrichment; FDR:
false discovery rate.

Category Term Count % FE p-value FDR
PIR SUPERFAMILY PIRSF003152:G protein-coupled olfactory receptor, class II 116 10.55 6.64 3.25E-68 4.41E-65

INTERPRO IPR000725:Olfactory receptor 116 10.55 6.53 7.58E-63 1.21E-59

SP PIR KEYWORDS olfaction 116 10.55 6.40 2.07E-61 2.97E-58

GOTERM MF FAT GO:0004984 olfactory receptor activity 116 10.55 6.13 1.30E-60 1.97E-57

GOTERM BP FAT GO:0007608 sensory perception of smell 117 10.64 5.96 1.91E-59 3.35E-56

GOTERM BP FAT GO:0007606 sensory perception of chemical stimulus 118 10.73 5.37 1.71E-54 3.01E-51

KEGG PATHWAY hsa04740:Olfactory transduction 108 9.82 4.94 8.72E-51 1.03E-47

SP PIR KEYWORDS sensory transduction 125 11.36 4.58 2.61E-48 3.74E-45

INTERPRO IPR017452:GPCR, rhodopsin-like superfamily 131 11.91 4.03 1.40E-44 2.24E-41

INTERPRO IPR000276:7TM GPCR, rhodopsin-like 131 11.91 4.02 1.68E-44 2.68E-41

PIR SUPERFAMILY PIRSF800006:rhodopsin-like G protein-coupled receptors 131 11.91 3.63 5.04E-43 6.85E-40

GOTERM BP FAT GO:0007600 sensory perception 138 12.55 3.54 4.78E-41 8.40E-38

SP PIR KEYWORDS g-protein coupled receptor 136 12.36 3.62 1.69E-40 2.42E-37

GOTERM BP FAT GO:0050890 cognition 143 13.00 3.23 5.34E-38 9.38E-35

SP PIR KEYWORDS transducer 137 12.45 3.39 1.48E-37 2.12E-34

GOTERM BP FAT GO:0050877 neurological system process 163 14.82 2.72 3.85E-34 6.76E-31

GOTERM BP FAT GO:0007186 G-protein coupled receptor protein signaling pathway 148 13.45 2.77 1.36E-31 2.40E-28

SP PIR KEYWORDS receptor 172 15.64 2.31 3.72E-26 5.33E-23

GOTERM BP FAT GO:0007166 cell surface receptor linked signal transduction 188 17.09 2.06 8.02E-24 1.41E-20

SP PIR KEYWORDS cell membrane 198 18.00 1.86 5.96E-19 8.52E-16

UP SEQ FEATURE topological domain:Extracellular 227 20.64 1.72 1.26E-17 2.20E-14

UP SEQ FEATURE topological domain:Cytoplasmic 250 22.73 1.52 1.13E-12 1.98E-09

UP SEQ FEATURE disulfide bond 211 19.18 1.56 9.11E-12 1.60E-08

SP PIR KEYWORDS disulfide bond 214 19.45 1.52 6.20E-11 8.88E-08

UP SEQ FEATURE glycosylation site:N-linked (GlcNAc...) 285 25.91 1.41 7.31E-11 1.28E-07

GOTERM CC FAT GO:0005886 plasma membrane 255 23.18 1.37 1.26E-09 1.77E-06

SP PIR KEYWORDS glycoprotein 289 26.27 1.37 1.83E-09 2.61E-06

GOTERM CC FAT GO:0016021 integral to membrane 328 29.82 1.27 9.34E-09 1.31E-05

SP PIR KEYWORDS transmembrane 317 28.82 1.31 1.37E-08 1.96E-05

UP SEQ FEATURE transmembrane region 314 28.55 1.31 2.03E-08 3.56E-05

GOTERM CC FAT GO:0031224 intrinsic to membrane 333 30.27 1.24 7.49E-08 1.05E-04

SMART SM00355:ZnF C2H2 69 6.27 1.86 4.23E-07 5.43E-04

UP SEQ FEATURE zinc finger region:C2H2-type 5 55 5.00 2.08 5.12E-07 8.99E-04

UP SEQ FEATURE zinc finger region:C2H2-type 4 57 5.18 2.01 8.49E-07 0.0015

INTERPRO IPR013087:Zinc finger, C2H2-type/integrase, DNA-binding 59 5.36 1.94 1.73E-06 0.0028

UP SEQ FEATURE zinc finger region:C2H2-type 2 58 5.27 1.95 1.73E-06 0.0030

SP PIR KEYWORDS membrane 372 33.82 1.21 2.69E-06 0.0038

INTERPRO IPR015880:Zinc finger, C2H2-like 69 6.27 1.78 4.09E-06 0.0065

UP SEQ FEATURE zinc finger region:C2H2-type 8 44 4.00 2.14 4.13E-06 0.0073

UP SEQ FEATURE zinc finger region:C2H2-type 3 58 5.27 1.90 4.43E-06 0.0078

UP SEQ FEATURE zinc finger region:C2H2-type 7 46 4.18 2.06 5.87E-06 0.0103

INTERPRO IPR007087:Zinc finger, C2H2-type 67 6.09 1.75 9.19E-06 0.0147

UP SEQ FEATURE zinc finger region:C2H2-type 6 48 4.36 1.99 9.83E-06 0.0173
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Table A3: K562 functional enrichments in regions of variable structure. FE: fold enrichment; FDR: false
discovery rate.

Category Term Count % FE p-value FDR
PIR SUPERFAMILY PIRSF038651:G protein-coupled olfactory receptor, class I 26 7.08 24.94 7.86E-30 8.99E-27

GOTERM MF FAT GO:0004984 olfactory receptor activity 40 10.90 6.12 7.39E-20 1.01E-16

INTERPRO IPR000725:Olfactory receptor 39 10.63 6.18 3.00E-19 4.29E-16

SP PIR KEYWORDS olfaction 39 10.63 6.15 4.55E-19 6.09E-16

GOTERM BP FAT GO:0007608 sensory perception of smell 39 10.63 5.48 1.19E-17 1.94E-14

SP PIR KEYWORDS sensory transduction 44 11.99 4.60 8.72E-17 1.44E-13

GOTERM BP FAT GO:0007606 sensory perception of chemical stimulus 39 10.63 4.89 6.32E-16 1.09E-12

KEGG PATHWAY hsa04740:Olfactory transduction 38 10.35 4.58 6.87E-16 7.22E-13

INTERPRO IPR017452:GPCR, rhodopsin-like superfamily 43 11.72 3.72 2.96E-13 4.23E-10

INTERPRO IPR000276:7TM GPCR, rhodopsin-like 43 11.72 3.72 3.10E-13 4.43E-10

SP PIR KEYWORDS transducer 46 12.53 3.26 4.97E-12 6.65E-09

SP PIR KEYWORDS g-protein coupled receptor 44 11.99 3.35 6.34E-12 8.48E-09

PIR SUPERFAMILY PIRSF800006:rhodopsin-like G protein-coupled receptors 42 11.44 3.26 6.34E-12 7.26E-09

GOTERM BP FAT GO:0007600 sensory perception 45 12.26 3.18 1.10E-11 1.80E-08

GOTERM BP FAT GO:0050890 cognition 46 12.53 2.87 1.87E-10 3.07E-07

UP SEQ FEATURE zinc finger region:C2H2-type 10 27 7.36 4.64 1.94E-10 3.10E-07

UP SEQ FEATURE zinc finger region:C2H2-type 1; degenerate 17 4.63 8.23 2.35E-10 3.77E-07

GOTERM BP FAT GO:0007186 G-protein coupled receptor protein signaling pathway 51 13.90 2.63 2.87E-10 4.70E-07

UP SEQ FEATURE zinc finger region:C2H2-type 11 25 6.81 4.91 3.32E-10 5.31E-07

UP SEQ FEATURE zinc finger region:C2H2-type 9 28 7.63 4.30 4.58E-10 7.33E-07

UP SEQ FEATURE zinc finger region:C2H2-type 12 23 6.27 5.27 5.15E-10 8.24E-07

SMART SM00349:KRAB 26 7.08 4.36 7.67E-10 8.65E-07

UP SEQ FEATURE zinc finger region:C2H2-type 15 17 4.63 7.40 1.17E-09 1.88E-06

UP SEQ FEATURE zinc finger region:C2H2-type 7 30 8.17 3.84 1.33E-09 2.13E-06

INTERPRO IPR001909:Krueppel-associated box 26 7.08 4.20 3.15E-09 4.49E-06

UP SEQ FEATURE domain:KRAB 25 6.81 4.37 3.38E-09 5.41E-06

UP SEQ FEATURE zinc finger region:C2H2-type 14 17 4.63 6.32 1.19E-08 1.90E-05

UP SEQ FEATURE zinc finger region:C2H2-type 13 19 5.18 5.50 1.19E-08 1.91E-05

UP SEQ FEATURE zinc finger region:C2H2-type 8 27 7.36 3.73 1.86E-08 2.98E-05

UP SEQ FEATURE zinc finger region:C2H2-type 6 29 7.90 3.42 3.22E-08 5.15E-05

INTERPRO IPR001089:Small chemokine, C-X-C 7 1.91 29.85 4.94E-08 7.06E-05

INTERPRO IPR002473:Small chemokine, C-X-C/Interleukin 8 7 1.91 27.72 8.52E-08 1.22E-04

GOTERM BP FAT GO:0050877 neurological system process 48 13.08 2.21 2.61E-07 4.27E-04

INTERPRO IPR018048:Small chemokine, C-X-C, conserved site 7 1.91 22.83 3.35E-07 4.79E-04

INTERPRO IPR002337:Haemoglobin, beta 5 1.36 55.44 5.04E-07 7.20E-04

INTERPRO IPR013087:Zinc finger, C2H2-type/integrase, DNA-binding 30 8.17 2.77 1.34E-06 0.002

SMART SM00355:ZnF C2H2 33 8.99 2.48 1.77E-06 0.002

SP PIR KEYWORDS receptor 52 14.17 2.00 2.39E-06 0.003

UP SEQ FEATURE zinc finger region:C2H2-type 5 27 7.36 2.90 2.39E-06 0.004

UP SEQ FEATURE zinc finger region:C2H2-type 3 29 7.90 2.70 3.79E-06 0.006

GOTERM MF FAT GO:0047760 butyrate-CoA ligase activity 5 1.36 38.47 3.81E-06 0.005

INTERPRO IPR007087:Zinc finger, C2H2-type 33 8.99 2.43 5.58E-06 0.008

PIR SUPERFAMILY PIRSF002522:CXC chemokine 6 1.63 20.55 6.13E-06 0.007

SP PIR KEYWORDS oxygen carrier 5 1.36 35.19 6.39E-06 0.009

INTERPRO IPR015880:Zinc finger, C2H2-like 33 8.99 2.39 7.71E-06 0.011

GOTERM BP FAT GO:0007166 cell surface receptor linked signal transduction 59 16.08 1.78 9.41E-06 0.015

UP SEQ FEATURE zinc finger region:C2H2-type 16 11 3.00 6.18 1.14E-05 0.018
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PIR SUPERFAMILY PIRSF500045:hemoglobin, vertebrate type 5 1.36 29.97 1.16E-05 0.013

UP SEQ FEATURE zinc finger region:C2H2-type 17 10 2.72 7.02 1.20E-05 0.019

UP SEQ FEATURE disulfide bond 77 20.98 1.62 1.27E-05 0.020

UP SEQ FEATURE topological domain:Extracellular 75 20.44 1.62 1.99E-05 0.032

PIR SUPERFAMILY PIRSF005559:zinc finger protein ZFP-36 13 3.54 4.58 2.22E-05 0.025

SP PIR KEYWORDS disulfide bond 78 21.25 1.59 2.44E-05 0.033

UP SEQ FEATURE zinc finger region:C2H2-type 20 7 1.91 11.56 2.64E-05 0.042

SP PIR KEYWORDS blood 5 1.36 25.59 2.89E-05 0.039

SP PIR KEYWORDS cell membrane 63 17.17 1.70 3.07E-05 0.041

133



appendices

0

3

6

9

12

0

3

6

9

12

0

3

6

9

12

H
1 hE

S
C

G
M

12878
K

562

1 2 3 4 5 6 7 8 9
Optimal number of clusters

N
um

be
r 

of
 v

ot
es

Figure S1: Optimal k cluster selection by majority vote from multiple algorithms. 30

methods for selecting the optimal number of clusters were applied to averaged TAD feature
enrichments in each cell type. In each case, the most-selected partition was for two clusters.
Performed using the NbClust R package. [252]
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Integrative modeling reveals the principles of
multi-scale chromatin boundary formation in
human nuclear organization
Benjamin L Moore, Stuart Aitken and Colin A Semple*

Abstract

Background: Interphase chromosomes adopt a hierarchical structure, and recent data have characterized their
chromatin organization at very different scales, from sub-genic regions associated with DNA-binding proteins at the
order of tens or hundreds of bases, through larger regions with active or repressed chromatin states, up to
multi-megabase-scale domains associated with nuclear positioning, replication timing and other qualities. However,
we have lacked detailed, quantitative models to understand the interactions between these different strata.

Results: Here we collate large collections of matched locus-level chromatin features and Hi-C interaction data,
representing higher-order organization, across three human cell types. We use quantitative modeling approaches to
assess whether locus-level features are sufficient to explain higher-order structure, and identify the most influential
underlying features. We identify structurally variable domains between cell types and examine the underlying features
to discover a general association with cell-type-specific enhancer activity. We also identify the most prominent
features marking the boundaries of two types of higher-order domains at different scales: topologically associating
domains and nuclear compartments. We find parallel enrichments of particular chromatin features for both types,
including features associated with active promoters and the architectural proteins CTCF and YY1.

Conclusions: We show that integrative modeling of large chromatin dataset collections using random forests can
generate useful insights into chromosome structure. The models produced recapitulate known biological features of
the cell types involved, allow exploration of the antecedents of higher-order structures and generate testable
hypotheses for further experimental studies.

Background
The chromatin structure of human interphase chromo-
somes plays critical roles in a wide range of cellular func-
tions and consists of many hierarchically arranged but
interconnected layers of structure. These range from the
three-dimensional arrangement of multi-megabase-scale
domains within the nucleus down to the chemical modifi-
cations carried by individual nucleosomes and nucleotides
at particular loci. A recurring question has been how these
many different levels of chromatin structure are related to
one another [1]. In the wake of recent efforts to compre-
hensively map the epigenomic landscape in human cells,
integrative approaches have suggested classifications of

*Correspondence: colin.semple@igmm.ed.ac.uk
MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK

chromatin into distinct, functional states. The number of
chromatin states identified in these pioneering studies has
varied widely, from as few as 6 to as many as 51, using a
variety of locus-level features such as DNA methylation,
histone modifications and transcription factor binding
patterns [2-5]. These states usually encompass small, sub-
genic regions and have provided intriguing insights into
chromatin-mediated variation in promoter and enhancer
activity. At the same time technological developments
such as the Hi-C method have provided datasets describ-
ing the overall spatial organization of the human genome
[6], but the relationships between such datasets and the
wide spectrum of locus-level features are not well under-
stood. A recent study examining seven such features and
their relationships to the spatial organization of the mouse
genome in embryonic stem cells (ESCs) concluded that
chromosome architecture is largely determined by the

© 2015 Moore et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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binding patterns of particular transcription factors, and
that these cells have a unique higher-order chromatin
structure as a result [7]. Thus it is unclear whether such
results are relevant to other cell types and species, or
whether the inclusion of a broader range of features would
provide additional insights.

Many aspects of higher-order chromatin remain broadly
invariant between cell types, and genome-wide datasets
as diverse as replication timing domains, lamin associa-
tion domains and Hi-C interaction matrix eigenvectors
show strong correlations across many different human cell
lines [8]. Indeed, most measurable aspects of higher-order
structure have been conserved during evolution across
the majority of the mammalian genome [8-10]. How-
ever, a minority (perhaps 20% to 30%) of the genome is
within more labile structures, such that the behaviors of
many replication timing domains and lamin association
domains change significantly upon cellular differentiation
from ESCs, altering the transcriptional output of many
resident genes [10,11]. A large literature surrounds the
dynamics of locus-level chromatin during differentiation
and reprogramming, emphasizing the critical importance
of genomic patterns of DNA binding proteins, particular
histone modifications and DNA methylation (for exam-
ple, [12]). Yet we still lack an integrated view of chromatin
dynamics that details the dependencies between these
locus-level phenomena, the remodeling of large domains
and changes in nuclear organization. The extent to which
higher-order chromatin dynamics depends upon the spec-
tra of features occurring at these lower levels has not been
studied quantitatively.

Given the existence of neighboring chromatin domains
with distinct structures and activities, the boundaries
defining such domains have been a focus of particu-
lar interest. The topological domains (TADs) described
by Dixon et al. [9] were reported to be separated by
boundary regions showing pronounced peaks of the insu-
lator binding protein CTCF, although depletion of CTCF
appears to have little effect on TAD boundaries [13].
Similarly, deletion of a TAD boundary on the mouse X
chromosome resulted in many altered interactions, but
did not cause the two TADs separated by this bound-
ary to completely merge [14]. Thus there is much left to
learn about the basis of TAD boundaries. The scale of
TAD organization (median length 880 kb) is below that
of the multi-megabase chromatin domains delineating
occupancy of A and B nuclear compartments [15]. These
compartments constitute domains of transcriptionally
active, relatively centrally positioned chromatin, and rel-
atively inactive, peripheral chromatin respectively; conse-
quently compartment boundaries often mark a profound
divergence in functional state. It is not known whether
TAD boundaries coincide with compartment bound-
aries, and the similarities or differences in the features

underlying these two boundary classes also remain
unstudied.

Here we exploit the unprecedented volumes of data
produced recently [4] to provide an integrated and rigor-
ously quantitative view of locus-level chromatin features,
higher-order chromatin structure and nuclear organiza-
tion across three cell types. We use integrative model-
ing approaches to directly study the contribution of 35
locus-level chromatin features to chromosome architec-
ture across three human cell types as measured by Hi-C.
These data are relevant to the quantitative, molecular
basis of higher-order chromatin, the dominant determi-
nants of chromatin dynamics, and prominent features
conferring the structure of domain boundaries.

Results
Higher-order chromatin organization is largely concordant
and predictable across cell types
In common with previous studies of higher-order chro-
matin structure [8-11], there was evidence for good con-
cordance of Hi-C data between different cell types. Hi-C
eigenvectors were calculated for three human cell types
(GM12878, H1 hESC and K562 cell lines) using the
same analysis protocols, and were found to be strongly
and significantly correlated (Figure 1; Additional file 1:
Figure S1). Most 1-Mb regions appear to be constitutively
present (that is, across cell types) in either the A or B
compartments, corresponding to relatively centrally posi-
tioned, transcriptionally active or more peripheral repres-
sive chromatin, respectively [15]. Strong correspondence
across cell types was also observed for TAD bound-
aries, and for the positioning of compartment bound-
aries, separating A and B compartments (Additional file 1:
Figure S2).

Although it is often assumed that higher-order
chromatin domain organization (at the megabase scale)
across the genome is to some degree dependent upon
lower-level features (at the scale of tens or hundreds of
base pairs), the identity and independent contributions of
these features are unknown. Beyond this it has also been
unclear whether there are strong enough dependencies
to allow accurate prediction of higher-order structure.
For each of the three Hi-C eigenvector datasets corre-
sponding to the Tier 1 ENCODE cell lines (GM12878, H1
hESC and K562) we assembled datasets of 35 matched
locus-level chromatin features, including sites bound
by 21 DNA binding proteins, and 11 histone modifica-
tions/variants and DNase hypersensitive sites (see Materials
and methods). The GC content of each 1-Mb region,
which is known to be correlated with higher-order struc-
ture (for example, [8]), was also included as an additional
feature in each model for comparison with chromatin
features. Importantly, each Hi-C dataset was re-analyzed
to provide comparable identically processed data, which
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Figure 1 Concordance of chromatin structure at multiple scales over three human cell types. The eigenvector compartment profile is shown for
chromosome 2 for three human cell types (left). Genome-wide Pearson correlation coefficients between eigenvectors at 1-Mb resolution are in the
range 0.75 to 0.80 (Additional file 1: Figure S2B). At higher resolution, the zoomed region illustrates conservation of topological domains (TADs) over
20 Mb of the same chromosome. Genome-wide, 33% of all H1 TAD boundaries have a matching boundary in GM12878 in the same or an adjacent
40-kb bin (K562: 31%, null model: 18%; Kolmogorov–Smirnov test: D = 0.26, p ≈ 0). Similarly, for H1 compartment boundaries, 37% have a
matching boundary in the same or an adjacent 100-kb bin in GM12878 (K562: 35%, null model: 7%; Kolmogorov–Smirnov test: D = 0.47, p ≈ 0,
Additional file 1: Figure S2A). Mb, megabases; TAD, topological domain.

was complementary to the identically processed, locus-
level ENCODE data. It was possible to construct random
forest models with good predictive accuracy, and strong
and significant correlations were seen between predicted
and empirically measured eigenvector values for each cell
type (Figure 2). The models show high predictive power,
particularly for GM12878 where the model achieved a
Pearson correlation coefficient (PCC) of 0.805 between
predicted and measured values. These levels of accuracy
are similar to those reported (median PCC = 0.83 over
seven cell types) for strikingly successful models of the
transcriptional output of promoters using locus-level
chromatin features [16]. Other evaluation metrics also
suggested successful models, such as the ability to cor-
rectly assign 1-Mb regions to compartments A and B (see
area under the receiver operating characteristic data in
Figure 2). It would be feasible to construct similar, but
more comprehensive models using all ENCODE chro-
matin features for a given cell type, although the resulting
models would not be comparable between cell types.
However, the high accuracy of the current models sug-
gests there is limited potential for improvement by adding
further features. Also, even the most comprehensive
models that could be constructed, using all currently

available data, inevitably represent a minority of the
features actually present in chromatin [1].

While 1-Mb compartment eigenvectors are low res-
olution relative to that typically employed for chro-
matin immunoprecipitation sequencing (ChIP-seq) data,
megabase bins are a suitable choice for analyzing large
chromosomal compartments [15,17]. To confirm our
modeling accuracy is not sensitive to resolution, we
applied models trained with 1 Mb to 100 kb resolution
datasets and saw similarly high levels of accuracy (88% to
95%, as accurate as 1-Mb models in terms of predicted and
empirical PCC, Additional file 1: Figure S3).

Influential features underlying higher-order structure
differ between cell types
Given the correlations seen between Hi-C eigenvec-
tors from different cell types (Figure 1) and the similar
predictive power of cell-type-specific models (Figure 2A),
one might assume that a similar combination of informa-
tive variables appears in each of the models. The broad
trends in relative variable importance (see Materials and
methods) do indeed suggest that many features have a
similar influence in each of the three models (Additional
file 1: Figure S4A). For example the genomic distributions
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Figure 2 Accurate models of higher-order chromatin state built from locus-level features. (A) Model predictions (Predicted eig) are compared to
observed values (Empirical eig). Various metrics are used to measure the accuracy of regression modeling – the Pearson correlation coefficient (PCC)
and root mean-squared error (RMSE) – and to evaluate classification accuracy (for A eig ≥ 0 and B eig < 0) – accuracy (percentage of true positives,
Acc.) and area under the receiver operating characteristic curve (AUROC). (B) Variable importance (shown for the ten most informative features per
model) is calculated as the decrease in the accuracy of predictions for the permuted variable relative to observed (in units of percentage increase in
MSE), averaged over the forest (see Materials and methods). Acc., accuracy; AUROC, area under the receiver operating characteristic curve; eig,
eigenvector; MSE, mean-squared error; PCC, Pearson correlation coefficient; RMSE, root mean-squared error.

of CTCF binding patterns, H3K36me3, H3K27ac and
GC content maintain very similar influence across all
three models, while certain variables depart from this
trend and show a notably higher variable importance in
a particular model. Thus substantial levels of variation
between cell types are seen for the top ten most influ-
ential variables across models (Figure 2B), such that the
repressive histone modification H3K9me3 is the only fea-
ture, among the ten most influential, shared between all
three cell-type models. This is expected since H3k9me3
is anticorrelated or uncorrelated with most other input
features (Additional file 1: Figure S5), and is therefore a
relatively information-rich variable. Overall, more highly
ranked features are shared between the two relatively
differentiated, hematopoietic cell lines (GM12878 and
K562), with the pluripotent ESC line (H1 hESC) show-
ing more distinct characteristics. The EGR1 transcription
factor plays critical roles in cellular differentiation and
shows markedly higher variable importance in the H1
hESC model. While the P300 transcriptional co-activator

protein, which controls the proliferation and differentia-
tion of hematopoietic progenitor cells, ranks more highly
in the two hematopoietic cell line models (Figure 2B,
Additional file 1: Figure S4).

Many of the variables examined here are heavily inter-
dependent, and for example co-occur in clusters denoting
functional chromatin states [4]. Care must be taken not
to over-interpret the differences in variable importance
between models, given the pervasive multi-collinearity
and clustering between variables in the input locus-level
feature set (Additional file 1: Figure S5). For instance,
MXI1 is an influential feature in both the hematopoi-
etic models, while MYC and MAX are among the high-
est ranked features in the H1 hESC model. This is in
keeping with recent results suggesting MYC binds open
chromatin as a transcriptional amplifier in ESCs [18,19],
with MAX and MXI1 long being known as antagonistic
co-regulators of MYC [20]. Thus, in identifying nomi-
nally different informative variables for each model we
will, to some extent, select different representatives of
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the same cluster (Additional file 1: Figure S5). It follows
that we would expect a large number of different fea-
ture combinations to have similar predictive power in
broadly equivalent random forest models. With a broader
perspective, there are general similarities across all three
models, in that all derive much of their predictive power
from indicators of transcriptional activity, markers of het-
erochromatin and the binding levels of combinations of
broadly expressed transcription factors (Additional file 1:
Figure S6).

Consistent with the presence of broad commonali-
ties among the three models, cross-application of mod-
els showed that models trained in one cell type often
performed well in another (Figure 3). In each instance
of cross-application, predictive accuracy declined by no
more than 21% relative to the model’s native cell type.
In reciprocal crosses between the two hematopoietic cell
lines (K562 and GM12878), this loss of accuracy was
between 5.9% and 7.8% (Figure 3A), but was 20.2% to
20.4% when these models were applied to H1 hESC data.

Figure 3 Models trained in one cell type can generalize to others. Each model, trained in one cell type, was applied to the chromatin feature
datasets from the other two cell types. (A) The GM12878 model achieved high accuracy when applied to K562 features (PCC = 0.76), as did the
reciprocal cross (PCC = 0.75). (B) In each case, predictive accuracy decreased on cross-application but there remains significant agreement
between predicted and empirical values. Acc., accuracy; AUROC, area under the receiver operating characteristic curve; PCC, Pearson correlation
coefficient; RMSE, root mean-squared error.
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This again highlights the relatively unusual structural fea-
tures of the pluripotent state.

We compared the performance of our random for-
est approach with two other regression methods: sim-
ple multiple linear regression and partial least squares
regression, a method particularly well suited to highly
correlated inputs [21]. While cell-type-specific predic-
tion accuracy remained high for each method, cross-
application between cell types confirmed our random
forest approach as that most capable of learning general-
izable rules of compartment prediction (Additional file 1:
Figure S7).

Regions of variable structure are enriched for
cell-type-specific enhancers
Although the chromatin organization of much of the
genome appears to be invariant between cell types
(Figure 1), some regions are more dynamic. There is a
clear relationship between modeling accuracy and struc-
tural stability between cell types such that the structures
of more variable regions are more challenging to predict.
This is evident even with the most liberal definitions of
variability; for instance, if we calculate the median abso-
lute deviation between eigenvectors across all three cell
types and simply trisect the distribution, we found that
the most structurally variable regions between cell types
were significantly less accurately modeled in each case
(Figure 4A). This could indicate the cell-type-specific fea-
tures responsible for organizing these regions are largely
missing from our training set, which undoubtedly rep-
resents a tiny minority of all the actual components of

chromatin in real human cells. However, it is unclear
whether structural variability defined so broadly reflects
altered biological function or is dominated by stochastic
variations in structure among cells [22].

A more conservative definition of structurally variable
regions is that they are regions altering their compart-
ment state (between A and B compartments) in one
cell type relative to the other two. Such regions will
often undergo dramatic changes between transcription-
ally permissive and repressive environments and might
be expected to be associated with cell-type-specific biol-
ogy, such as functional chromatin states [4]. This indeed
seems to be the case, with regions occupying altered com-
partments showing corresponding changes in enhancer
activity. Regions undergoing a B to A compartment tran-
sition, to a relatively transcriptionally permissive struc-
ture, were enriched for cell-type-specific enhancers in the
two derived cell types used in this study but not in the
ESC line, which would not be expected to have lineage-
specific enhancer contacts active in its pluripotent state
(Figure 4B). The same pattern was not seen for enhancers
shared between two or more of the cell types under study.
We observed a similar enrichment for cell-type-specific
transcription (Additional file 1: Figure S8) but not for sev-
eral other chromatin states including promoter activity
(Additional file 1: Figure S9).

For each cell line, we identified all regions showing
cell-type-specific occupancy of the active A compart-
ment and ranked these regions according to the den-
sity of predicted active enhancers. Close examination
of these regions reveals many examples of enhancer

Figure 4 Regions with variable structure are less successfully modeled and are associated with cell-type-specific enhancer activity. (A) Model
accuracy is significantly different between low- and high-variability regions, defined as, respectively, the lowest and highest thirds of the distribution
of median absolute deviations between cell types. (B) Regions occupying altered compartments are defined as those assigned to A in one cell type
but to B in the other two cell types, or vice versa. The numbers of enhancers (cell type specific or shared between two or more cell types) are shown
for regions with altered (open or closed) and non-altered (none) compartments in each cell type. PCC, Pearson correlation coefficient.
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activity nucleated upon genes associated with cell-type-
specific biology (Figure 5A, Additional file 1: Figure S10).
For the GM12878 (B-cell derived) cell line, an active
region of variable structure rich in active enhancers was
found to contain the EBF1 (early B-cell factor 1) gene
(Figure 5A). The transcription factor encoded by this gene
has been identified as essential in maintaining B-cell iden-
tity and establishing early lineage commitment [23,24].
Similarly a variable region active in H1 hESC (Additional
file 1: Figure S10B.1) harbors the PAX1 regulator of
patterning during embryogenesis [25], while a K562-
specific active region (Additional file 1: Figure S10C.3)
contains a gene encoding a regulator of hematopoiesis
(ZFPM2/FOG2 [26]). Each example is concordant with
the known biology of the cell type concerned, and each
is illustrative of the genome-wide relationship between

higher-order structural variability and cell-type-specific
enhancer activity (Figure 4B). We explored the func-
tional annotations of genes in regions of cell-type-specific
structure (Additional file 2: Tables S1, S2 and S3), and
although we observed some artifactual enrichments (gen-
erated by duplicated gene clusters within some of these 1-
Mb regions), no significant enrichments were seen across
regions.

A defining characteristic of active A compartment
regions is a preferential bias in contacting other A
compartment regions [15]. However, it is not clear
whether cell-type-specific transitions in higher-order
structure are solely compartment-level phenomena, or
involve other structural strata. We therefore examined the
genome-wide contact profiles of each region of variable
cell-type-specific chromatin structure in detail. If these

Figure 5 Structurally variable regions indicate cell-type-specific biology. Regions occupying the active A nuclear compartment in one cell type, but
the repressed B compartment in the other two, were selected and ranked by the number of predicted active enhancers (Figure 4). (A) The region
chr5:158–159 Mb, which occupies the open A compartment in GM12878 cells, is shown as an example (top five regions for each cell type are shown
in Additional file 1: Figure S10). Displayed tracks are: known genes (UCSC), compartment eigenvectors, chromHMM/Segway combined chromatin
state predictions, open chromatin FAIRE peaks, and H3K27ac signal. (B) Structurally variable regions show a greater than expected proportion of
contacts with other active A compartments, in the cell type in which they are active relative to those same regions in the other two cell types. Box
plot notches represent 95% confidence intervals of the median. Each variable region is also shown individually in Additional file 1: Figure S11. TSS,
transcription start site.
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cell-type-specific structures are mediated by finer-scale
structural levels (such as TADs) we might expect to see
predominantly short-range contacts in their underlying
contact profile. Instead, we found that variable regions
preferentially interact with other A compartment regions
in the cell types in which they are active (Figure 5B,
Additional file 1: Figure S11), but not in the other
cell types in which they are inactive. This supports the
idea that these cell-type-specific regions are undergoing
compartment-level transitions, disproportionately medi-
ated by the formation of long-range contacts, while also
not precluding additional changes at lower levels such as
TADs.

TAD boundaries and compartment boundaries possess
similar features
The mammalian genome is organized into TADs, pre-
dominantly self-interacting chromatin domains, with
boundary regions reportedly associated with pronounced
peaks and troughs of particular features within 500 kb
of the predicted boundary [9]. Exploration of this phe-
nomenon using a set of 24 mouse ESC chromatin features
(and a smaller number of human ESC features) report-
edly revealed enrichment peaks of CTCF, H3K4me3 and
H3K36me3, as well as a pronounced dip in H3K9me3, sug-
gesting that high levels of transcription may contribute to
boundary formation [9]. However, it was unclear whether
other features show unusual patterns in TAD boundary
regions, and whether the constellation of features involved
changes between cell types. The features associated with
boundaries separating A and B compartments calculated
from Hi-C eigenvectors have not been studied to our
knowledge. The datasets assembled here, consisting of
35 matched chromatin features across three cell types,
allow us to conduct the first comparative study of the
constituents of human TAD and compartment boundary
regions.

We derived TAD boundaries according to established
methods [9] for all three cell types under study. We then
sought evidence for significantly enriched or depleted
features at TAD boundary regions using a conservative
approach (a nonparametric statistical test and Bonferroni
multiple testing correction, see Materials and methods),
and confirmed the previously reported peaks (CTCF and
POL2) and dip (H3K9me3) in ESC data, but also revealed
substantial heterogeneity between cell types. CTCF bind-
ing was found enriched at TAD boundaries across all
cell types, but other features, including H3K36me3 and
H3K4me3, show dramatic peaks of enrichment in H1
hESC cells that are not seen consistently in other cell types
(Figure 6, Additional file 1: Figure S12). Although the dip
in H3K9me3 at TAD boundaries is seen in all cell types,
the extent of the depletion varies and is weakest in H1
hESC cells. Many other features show significant, though

often modest, enrichments in a particular cell type. How-
ever, overall the complexity of TAD boundaries (measured
as the number of strongly enriched features) is notably
higher in H1 hESC than in the other two, more differen-
tiated, cell types (Figure 6), involving large increases in
the binding of sequence specific factors such as SP1 and
JUND.

Across all three cell types, several features demon-
strate consistent and statistically significant patterns at
TAD boundaries (Figure 6, Additional file 1: Figure S12),
including peaks associated with active transcription of
genes (POL2 and H3K9ac) and dips in H3K9me3, as pre-
viously reported [9]. However, other novel feature peaks
of interest emerge across cell types, such as peaks of
H4K20me1, a modification previously implicated in chro-
matin compaction [27]. Significant peaks in YY1 are evi-
dent in all cell types, which is intriguing given the evidence
that YY1 and CTCF cooperate to affect long-distance
interactions [28]. Co-binding of CTCF with YY1 has also
been shown to identify a subset of highly conserved CTCF
sites [29]. Co-binding of CTCF and YY1 may also there-
fore be a contributing factor in the establishment of TAD
boundaries, which appear to be broadly conserved across
mammals [9]. To test this, we split our sets of TAD bound-
aries into those possessing ChiP-seq peaks (region peaks
called by ENCODE [4]) for CTCF, YY1, both CTCF and
YY1 (overlapping peaks) and neither. We then tested each
boundary subset for genome-wide enrichments of the
other features in our dataset (Additional file 1: Figure
S14). Unexpectedly, we found that boundaries marked by
YY1 (without overlapping CTCF peaks) were generally
most strongly enriched for other features in our dataset.
We also found that boundaries lacking both CTCF and
YY1 peaks showed instead the strongest enrichments for
RAD21 in each cell type (Additional file 1: Figure S14),
reinforcing previous findings that describe the distinct
influences of CTCF and cohesin in organizing chromatin
structure [13,30,31]. We also observe consistent increases
in GC content at TAD boundaries, at a scale that is dif-
ficult to reconcile with the presence of smaller-scale fea-
tures such as repeat elements or CpG islands (Additional
file 1: Figure S12).

Where neighboring genomic regions occupy contrast-
ing A and B nuclear compartments, the disparity implies
the presence of a boundary region. Putative compartment
boundaries were identified by using a hidden Markov
model to infer the state sequence of A/B compartments
across the genome based on observed principal com-
ponent eigenvectors. Analogously to the TAD boundary
analysis, we then sought significant enrichments or deple-
tions in 36 chromatin features over these compartment
boundaries (Figure 6, Additional file 1: Figure S13). Com-
partment boundaries display similar spectra of enrich-
ments to previously studied TAD boundaries [9] but at
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Figure 6 Chromatin features underlying TAD and compartment boundaries. (A) Selected profiles for locus-level features are shown for TAD
boundaries (CTCF, H3K9me3 and POL2) and compartment boundaries (H2A.Z, H3K4me2 and YY1), as a mean normalized ChIP-seq signal relative to
input chromatin per bin (±1 standard error). TAD boundaries were examined over 40-kb bins over the 1 Mb flanking each boundary; compartment
boundaries were examined over 100-kb bins over 3 Mb. (B) The significance of enrichment or depletion (− log10 P two-tailed Mann–Whitney test)
of a feature was calculated as the boundary bin relative to the ten most peripheral bins (five either side). Points are scaled by the absolute mean
difference in signal over the boundary relative to the mean of peripheral bins. ChIP-seq, chromatin immunoprecipitation sequencing; TAD,
topological domain.

lower resolution, reflecting the different scales of these
levels of organization (Figure 6B, Additional file 1: Figure
S13). Peaks associated with active promoters (POL2,
TAF1 and H3K9ac) are again evident. Parallel enrich-
ments of CTCF, YY1 and H4K20me1 are also seen at
compartment boundaries, as they were for TAD bound-
aries, in each cell type under study. In addition, com-
partment boundaries show enrichments of H3K79me2,
which is known to play critical roles in cellular reprogram-
ming [32]. Remarkably, H3K79me2 has also recently been
shown to mark the borders of small regions of open chro-
matin (hundreds of base pairs) [33]. Thus, there may be
similarities in chromatin compaction boundaries at very
different scales.

Certain features show intriguing contrasts between
cell types. The histone variant H2A.Z lacks any trace

of enrichment at H1 hESC compartment boundaries,
but is significantly enriched in the other two cell types
(Figure 6A), consistent with reports describing H2A.Z
relocation during cellular differentiation [34]. Compart-
ment boundaries also show enrichment for the cohesin
complex subunit RAD21 in the two hematopoietic cell
types (Additional file 1: Figure S12), and cohesin is
another factor implicated in modulating nuclear archi-
tecture in partnership with CTCF [13]. Various other
enrichments with very modest effect sizes are also evi-
dent at compartment boundaries (Figure 6B, Additional
file 1: Figure S13). In contrast to TAD boundaries, the
composition of compartment boundaries appears least
complex in H1 hESC, relative to the other two cell types.
Overall compartment and TAD boundaries are associated
with overlapping spectra of chromatin features across cell
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types. These involve DNA-binding proteins implicated in
chromosome architecture (CTCF, YY1 and RAD21), but
also implicate the initiation and repression of transcrip-
tion as critical to boundary formation. However, these
two boundary classes occur at different scales, with pat-
terns of informative features typically spanning regions
up to 500 kb for TAD boundaries, and patterns associ-
ated with compartment boundaries often spanning more
than 1 Mb (Additional file 1: Figure S12, Additional file 1:
Figure S13).

Topological domains cluster by epigenetic enrichments
Sexton et al. [35] showed that, in the Drosophila genome,
topological structures termed physical domains could
observably be clustered into distinct functional groups
based on their average feature enrichments. It is of inter-
est to repeat this experiment with our human datasets
and across multiple cell types to detect finer delineation
of chromatin state beyond A and B compartmentaliza-
tion. We found that TADs called across the three cell
types used in this work could be clustered into tran-
scriptionally active (active), repressed heterochromatin
(null) and polycomb-associated (PcG) domains, based on
the patterns of DNase hypersensitivity, H3k9me3 and
H3k27me3, respectively (Additional file 1: Figure S15).
This analysis reveals that active compartments typically
cover both active and PcG-associated TADs, while B com-
partments appear more homogeneous and are composed
mostly of H3k9me3-enriched heterochromatin even when
considering fine-grained TAD structures rather than
megabase-sized genomic blocks.

Discussion
The recent abundance of epigenomic data for model cell
types has enabled accurate modeling of the transcriptional
output of human promoters, and a rigorously quantita-
tive assessment of the most influential chromatin features
underlying gene expression [16]. We have shown that it
is possible to construct comparable models describing the
features underlying higher-order chromatin structure, and
that their predictive accuracy can be high. Our analysis
exploits Hi-C datasets that have been re-analyzed, from
the initial sequence read mapping onwards, identically
for three different cell types. These data were collated
with 35 locus-level ENCODE chromatin datasets, also
processed identically, and matched across the same cell
types. In common with previous studies [8,9], we observed
good concordance of higher-order chromatin structure,
reflected in Hi-C data, between different cell types. Ran-
dom forest models summarized the important relation-
ships among these many variables, providing insights
into the quantitative contributions of locus-level chro-
matin features to higher-order structures. Although cer-
tain features were notably more influential in a particular

cell type, the models shared overlapping constellations
of informative features, allowing the cross-application of
models between cell types.

Integrative analyses of locus-level chromatin data have
allowed the prediction of functional chromatin states
[2-5] but these states typically encompass small regions
such as the enhancers examined here. The prediction of
higher-order chromatin domains has received much less
attention, and it was not clear until now that sufficient
data existed to allow accurate predictions. Our data show
that accurate predictions of Hi-C-derived eigenvector val-
ues, and the nuclear compartment domains based upon
them, are entirely feasible. Strong and significant correla-
tions are seen between cell types for a variety of human
higher-order domains, delineating variation in replica-
tion timing, lamin association and nuclear compartments
derived from Hi-C eigenvectors [8]. The data presented
here therefore suggest that a variety of such domains
could be successfully modeled. Given that the binding pat-
terns of most human chromatin components have not yet
been mapped, the models presented here are remarkably
successful, though will undoubtedly improve with fur-
ther data and algorithm development. These models also
allowed us to probe the features underlying regions with
variable higher-order structure between cell types, reveal-
ing enrichments of cell-type-specific enhancer activity,
and suggesting links between functional chromatin states
and higher-order domain dynamics. It is not possible to
distinguish cause and effect using the current data, but it
seems likely that the alterations in domain organization
occur prior to enhancer activity.

The current data suggest that the contributions of cer-
tain locus-level chromatin features to higher-order struc-
tures vary between cell types. Striking examples include
the strong influence of H3K9me3 in K562 leukemia cells,
and EGR1 binding in H1 hESC. EGR1 is a pivotal reg-
ulator of cell fate and mitogenesis with critical roles in
development and cancer [36]. The patterns of repres-
sive H3K9me3 accumulation have been a focus in the
cancer literature and have been proposed as a diagnos-
tic marker in leukemia [37]. Similarly, the model for
GM12878 (Epstein–Barr virus transformed lymphoblas-
toid) cells shows a disproportionate influence of ATF3
binding patterns, and ATF3 induction is a known con-
sequence of virus-transformed cells [38]. Thus, the most
cell-type-specific features in these models may be impor-
tant indicators of cell-type-specific functions. These cell-
type-specific features present a paradox, in view of the
strong correlations in organization genome-wide across
different cell types [8,9], and the demonstration that mod-
els trained in one cell type often perform well with data
from other cell types. These contradictory observations
are reconciled by the presence of inter-correlated clus-
ters of features underlying A and B compartments. The
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shifting membership of these clusters evidently retains
enough similarity between cell types to enable the cross-
application of models.

Chromatin boundaries, separating TADs and nuclear
compartments at different scales, also showed cell-type-
specific enrichments of various locus-level chromatin
features. Across cell types, the complexity of boundary
composition varies considerably so that only a few features
were seen consistently enriched or depleted at bound-
aries. Peaks associated with active promoters were notable
for both TAD and compartment boundaries in all cell
types. Among the most influential variables for the ran-
dom forest models constructed for the two hematopoietic
cell lines was the ubiquitous transcription factor YY1,
which reappeared in the analysis of chromatin bound-
ary regions. Significant enrichments of YY1 were seen at
TAD and nuclear compartment boundaries in all three
cell types. Thus, the same protein was implicated at the
level of broad genomic binding patterns (over 1-Mb inter-
vals) and at the level of locally enriched peaks at boundary
regions (spanning 100 to 500 kb). This is intriguing as YY1
has recently been shown to co-localize with the architec-
tural protein CTCF [39] and suggests that these proteins
cooperate in the establishment of domain boundaries. The
identification of such features, significantly enriched at
boundary regions, provides potential targets for deletion
in experimental studies further exploring the structure
and function of domains (for example, [14]). Both cell-
type-specific and general constituents of boundaries may
have utility in the biomedical interpretation of genomic
variation in noncoding regions of the genome.

Conclusions
It has become commonplace to discuss the multi-layered,
hierarchical organization of interphase chromosomes
across strata ranging from nuclear compartments, down
to the spectra of histone modifications and bound pro-
teins at individual sub-genic regions. However, we lack a
detailed understanding of how these strata interact. We
have shown that our perspectives of features occurring at
different strata can be bridged by modeling approaches,
and the models produced can be used to explore the
interrelationships between these different features quan-
titatively.

We constructed cell-type-specific models of nuclear
organization, as reflected in Hi-C-derived eigenvector
profiles, to discover the most influential features under-
lying higher-order structures. We found open and closed
compartments to be well correlated with combinato-
rial patterns of histone modifications and DNA bind-
ing proteins, enabling accurate predictive models. These
models could be cross-applied successfully between cell
types highlighting constellations of common structural
features associated with different nuclear compartments

as expected. Dissection of the most influential variables
also revealed important differences between models, con-
sistent with the known biological contrasts among these
cell types, such as the prominence of EGR1 in ESCs
and H3K9me3 in the leukemia cell line. Investigation of
regions showing variable nuclear organization across the
three cell types under study, revealed enrichments for cell-
type-specific enhancer activity, often nucleated at genes
with known roles in cell-type-specific functions. Finally
we used model predictions to examine boundary com-
position between higher-order domains across cell types.
Among enrichments of a large number of factors observed
at different boundaries in different cell types, CTCF and
YY1 were found consistently and may cooperate to estab-
lish domain boundaries. In summary, we show that inte-
grative modeling of large chromatin dataset collections
using random forests can generate useful insights into
chromosome structure and seed testable hypotheses for
further experimental studies.

Materials and methods
Hi-C data and locus-level chromatin features
Hi-C datasets for human cell types H1 hESC [9], K562
[15] and GM12878 [40] were retrieved (Gene Expres-
sion Omnibus accession numbers: [GEO:GSE35156],
[GEO:GSE18199] and [GEO:SRX030113]) and mapped to
the genome (hg19/GRCh37). Iterative mapping was per-
formed using the hiclib software package [41] and
bowtie2 [42] with the very-sensitive flag. Mapped
reads were then binned into contact maps and iteratively
corrected [41]. The hiclib software was also used for
eigenvector expansion of each intrachromosomal con-
tact map, performed independently for each chromosome
arm.

Genome-wide ChIP-seq datasets for 22 DNA binding
proteins (ATF3, CEBPB, CHD1, CHD2, CMYC, CTCF,
EGR1, EZH2, GABP, JUND, MAX, MXI1, NRSF, POL2,
P300, RAD21, SIX5, SP1, TAF1, TBP, YY1 and ZNF143)
and ten histone modifications (H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2,
H3K9ac, H3K9me3 and H4K20me1) were produced by
ENCODE (July 2012 data freeze, used in [43,44]), in addi-
tion to DNase I hypersensitivity data and H2A.Z occu-
pancy (Additional file 1: Figure S5), for each of the Tier 1
ENCODE cell lines used in this work: H1 hESC, K562 and
GM12878 [4]. These data were processed using MACSv2
[45] to produce a fold-change signal relative to input chro-
matin and the data are available from [43]. Regional GC
content was also calculated for each 1-Mb region and used
in the feature modeling set (Additional file 3).

Structural modeling and variability
Random forest regression [46] was used as implemented
in the R package randomForest [47]. Parameters of
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mtry = n/3 = 12 and ntrees = 200 were assumed as
the algorithm is known to be largely insensitive [48]. Vari-
able importance within random forest regression models
was measured using the mean decrease in accuracy in the
out-of-bag sample. This represents the average difference
(over the forest) between the accuracy of a tree with per-
muted and unpermuted versions of a given variable in
units of percentage mean-squared error [49]. The effec-
tiveness of the modeling approach was measured by four
different metrics. Prediction accuracy was assessed by the
PCC between the predicted and observed eigenvectors
(out-of-bag estimate), and the root mean-squared error
of the same data. Classification error, when predictions
were thresholded into A ≥ 0 and B < 0, was also calcu-
lated using accuracy (percentage correct classifications or
true positives) and the area under the receiver operating
characteristic (AUROC) curve. Together these give a com-
prehensive overview of model performance, both in terms
of regression accuracy of the continuous eigenvector, and
in how that same model could be used to label discrete
chromatin compartments.

For cross-application of cell-type-specific models, a sin-
gle random forest regression model was learned from all
1-Mb bins for a given cell type. This was then used to pre-
dict all bins from each of the other two cell types. The
median absolute deviation was chosen as a robust mea-
sure of the variability in a given 1-Mb block between the
three cell types. Blocks were ranked by this measure and
the distribution was split into thirds that represented low
variability (the third of blocks with the lowest median
absolute deviation), and mid and high variability. Each
subgroup was then independently modeled using the ran-
dom forest approach described above. For each cell type
we identified 1-Mb regions whose compartment state was
altered relative to the other two. For example, if a 1-Mb
bin was classified as occupying compartment A in H1
hESC and B in both K562 and GM12878, it is said to
occupy an altered open compartment in H1 hESC. Chro-
matin state annotations were calculated from ENCODE
ChromHMM/SegWay combined annotations for each cell
type [5]. Annotated features were considered shared if
there was an overlapping annotation in either of the two
other cell types, and labeled as specific to a cell type
otherwise.

Chromatin boundaries
TAD boundaries were called using software provided
by Dixon et al. [9] with recommended parameters.
For the generation of locus-level feature profiles over
TAD boundaries, input features were averaged into
40-kb bins spanning ±500 kb from the boundary cen-
ter. For compartment boundaries, a two-state hidden
Markov model was trained on the compartment eigen-
vector data and the Viterbi algorithm was used to infer

the most likely underlying state sequence that generated
the observed compartment eigenvectors. Compartment
boundaries were then defined as the point of transi-
tion between different compartment types. To generate
boundary profiles, locus-level features were averaged into
100-kb windows extending ±1.5 Mb either side of the
boundary center.

To test for the enrichment or depletion of a chro-
matin feature over a given boundary, a two-tailed Mann–
Whitney test was used to compare the boundary bin
with the ten outermost bins of the window (five from
either side). The significance level at α = 0.01 was
then Bonferroni-adjusted for multiple testing correction,
and results with P values exceeding this threshold were
deemed significantly enriched or depleted at a given
boundary.

Scripts to reproduce the analyses and generate
manuscripts figures are available at [50].
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(S1 to S15) with captions.

Additional file 2: Tables S1 to S3. Functional enrichments of genes
located within structurally variable regions in each cell type.

Additional file 3: cellTypeFeatureSets. Archive containing
comma-separated value (CSV) files of binned input features and
compartment eigenvectors used for modeling, for each of the three cell
types used in this study.

Abbreviations
AUROC: Area under the receiver operating characteristic curve; ChIP-seq:
Chromatin immunoprecipitation sequencing; ESC: Embryonic stem cell; kb:
kilobases; Mb: megabases; PCC: Pearson correlation coefficient; PcG:
polycomb-associated; TAD: Topological domain.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BLM carried out the analysis and helped draft the manuscript. CAS and SA
conceived of the study, participated in its design and coordination and drafted
the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We are indebted to the ENCODE Consortium for timely and comprehensive
access to its data. We are grateful to Anshul Kundaje, Stanford University, for
advice on using these data. We thank the UK Medical Research Council for
financial support.

Received: 9 September 2014 Accepted: 24 April 2015

References
1. Bickmore Wa, van Steensel B. Genome architecture: domain organization

of interphase chromosomes. Cell. 2013;152:1270–84.
doi:10.1016/j.cell.2013.02.001.

2. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
characterization. Nat Methods. 2012;9:215–16. doi:10.1038/nmeth.1906.

3. Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, et al. Combinatorial
patterning of chromatin regulators uncovered by genome-wide location
analysis in human cells. Cell. 2011;147:1628–39.
doi:10.1016/j.cell.2011.09.057.



Moore et al. Genome Biology  (2015) 16:110 Page 13 of 14

4. ENCODE. An integrated encyclopedia of DNA elements in the human
genome. Nature. 2012;489:57–74. doi:10.1038/nature11247.

5. Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS, Libbrecht M, et al.
Integrative annotation of chromatin elements from ENCODE data.
Nucleic Acids Res. 2013;41:827–41. doi:10.1093/nar/gks1284.

6. Dekker J, Marti-Renom Ma, Mirny La. Exploring the three-dimensional
organization of genomes: interpreting chromatin interaction data. Nat
Rev Genet. 2013;14:390–403. doi:10.1038/nrg3454.

7. de Wit E, Bouwman BA, Zhu Y, Klous P, Splinter E, Verstegen MJ, et al.
The pluripotent genome in three dimensions is shaped around
pluripotency factors. Nature. 2013;501:227–31. doi:10.1038/nature12420.

8. Chambers EV, Bickmore WA, Semple CA. Divergence of mammalian
higher order chromatin structure is associated with developmental loci.
PLoS Comput Biol. 2013;9:1003017. doi:10.1371/journal.pcbi.1003017.

9. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological
domains in mammalian genomes identified by analysis of chromatin
interactions. Nature. 2012;485:376–80. doi:10.1038/nature11082.

10. Meuleman W, Peric-Hupkes D, Kind J, Beaudry JB, Pagie L, Kellis M, et al.
Constitutive nuclear lamina-genome interactions are highly conserved
and associated with A/T-rich sequence. Genome Res. 2013;23:270–80.
doi:10.1101/gr.141028.112.

11. Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, et al. Genome-wide
dynamics of replication timing revealed by in vitro models of mouse
embryogenesis. Genome Res. 2010;20:155–69. doi:10.1101/gr.099796.109.

12. Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem
cell: an epigenetic perspective. Cell Res. 2013;23:49–69.
doi:10.1038/cr.2012.175.

13. Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RWW,
et al. Cohesin and CTCF differentially affect chromatin architecture and
gene expression in human cells. Proc Natl Acad Sci USA. 2014;111:
996–1001. doi:10.1073/pnas.1317788111.

14. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al.
Spatial partitioning of the regulatory landscape of the X-inactivation
centre. Nature. 2012;485:381–5. doi:10.1038/nature11049.

15. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, et al. Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science. 2009;326:
289–93. doi:10.1126/science.1181369.

16. Dong X, Greven MC, Kundaje A, Djebali S, Brown JB, Cheng C, et al.
Modeling gene expression using chromatin features in various cellular
contexts. Genome Biol. 2012;13:53. doi:10.1186/gb-2012-13-9-r53.

17. Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s Guide to Hi-C analysis:
practical guidelines. Methods. 2015;72:65–75.
doi:10.1016/j.ymeth.2014.10.031.

18. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. c-Myc is a universal
amplifier of expressed genes in lymphocytes and embryonic stem cells.
Cell. 2012;151:68–79. doi:10.1016/j.cell.2012.08.033.

19. Kieffer-Kwon KR, Tang Z, Mathe E, Qian J, Sung MH, Li G, et al.
Interactome maps of mouse gene regulatory domains reveal basic
principles of transcriptional regulation. Cell. 2013;155:1507–20.
doi:10.1016/j.cell.2013.11.039.

20. Zervos AS, Gyuris J, Brent R. Mxi1, a protein that specifically interacts with
Max to bind Myc-Max recognition sites. Cell. 1993;72:223–32.
doi:10.1016/0092-8674(93)90662-A.

21. Wold S, Ruhe A, Wold H, Dunn III WJ. The collinearity problem in linear
regression. The partial least squares (PLS) approach to generalized
inverses. SIAM J Sci Stat Comput. 1984;5:735–43. doi:10.1137/0905052.

22. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al.
Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
Nature. 2013;502:59–64. doi:10.1038/nature12593.

23. Nechanitzky R, Akbas D, Scherer S, Györy I, Hoyler T, Ramamoorthy S,
et al. Transcription factor EBF1 is essential for the maintenance of B cell
identity and prevention of alternative fates in committed cells. Nat
Immunol. 2013;14:867–75. doi:10.1038/ni.2641.

24. Mansson R, Welinder E, Åhsberg J, Lin YC, Benner C, Glass CK, et al.
Positive intergenic feedback circuitry, involving EBF1 and FOXO1,
orchestrates B-cell fate. Proc Natl Acad Sci USA. 2012;109:21028–33.
doi:10.1073/pnas.1211427109.

25. Pohl E, Aykut A, Beleggia F, Karaca E, Durmaz B, Keupp K, et al. A
hypofunctional PAX1 mutation causes autosomal recessively inherited

otofaciocervical syndrome. Hum Genet. 2013;132:1311–20.
doi:10.1007/s00439-013-1337-9.

26. Svensson EC, Tufts RL, Polk CE, Leiden JM. Molecular cloning of FOG-2: a
modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl
Acad Sci USA. 1999;96:956–61.

27. Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA, et al.
H4K20 methylation regulates quiescence and chromatin compaction.
Mol Biol Cell. 2013;24:3025–7. doi:10.1091/mbc.E12-07-0529.

28. Atchison ML. Function of YY1 in long-distance DNA interactions. Front
Immunol. 2014;5:45. doi:10.3389/fimmu.2014.00045.

29. Schwalie PC, Ward MC, Cain CE, Faure AJ, Gilad Y, Odom DT, et al.
Co-binding by YY1 identifies the transcriptionally active, highly conserved
set of CTCF-bound regions in primate genomes. Genome Biol. 2013;14:
148. doi:10.1186/gb-2013-14-12-r148.

30. Seitan VC, Faure AJ, Zhan Y, McCord RP, Lajoie BR, Ing-Simmons E, et al.
Cohesin-based chromatin interactions enable regulated gene expression
within preexisting architectural compartments. Genome Res. 2013;23:
2066–77. doi:10.1101/gr.161620.113.

31. Phillips-Cremins JE, Sauria MEG, Sanyal A, Gerasimova TI, Lajoie BR, Bell
JSK, et al. Architectural protein subclasses shape 3D organization of
genomes during lineage commitment. Cell. 2013;153:1281–95.
doi:10.1016/j.cell.2013.04.053.

32. Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, et al.
Chromatin-modifying enzymes as modulators of reprogramming. Nature.
2012;483:598–602. doi:10.1038/nature10953.

33. Chai X, Nagarajan S, Kim K, Lee K, Choi JK. Regulation of the boundaries
of accessible chromatin. PLoS Genet. 2013;9:1003778.
doi:10.1371/journal.pgen.1003778.

34. Ku M, Jaffe JD, Koche RP, Rheinbay E, Endoh M, Koseki H, et al. H2A.Z
landscapes and dual modifications in pluripotent and multipotent stem
cells underlie complex genome regulatory functions. Genome Biol.
2012;13:85. doi:10.1186/gb-2012-13-10-r85.

35. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, et
al. Three-dimensional folding and functional organization principles of the
Drosophila genome. Cell. 2012;148:458–72. doi:10.1016/j.cell.2012.01.010.

36. Zwang Y, Oren M, Yarden Y. Consistency test of the cell cycle: roles for
p53 and EGR1. Cancer Res. 2012;72:1051–4.
doi:10.1158/0008-5472.CAN-11-3382.

37. Müller-Tidow C, Klein HU, Hascher A, Isken F, Tickenbrock L,
Thoennissen N, et al. Profiling of histone H3 lysine 9 trimethylation levels
predicts transcription factor activity and survival in acute myeloid
leukemia. Blood. 2010;116:3564–71. doi:10.1182/blood-2009-09-240978.

38. Hagmeyer BM, Duyndam MC, Angel P, de Groot RP, Verlaan M, Elfferich
P, et al. Altered AP-1/ATF complexes in adenovirus-E1-transformed cells
due to EIA-dependent induction of ATF3. Oncogene. 1996;12:1025–32.

39. Ong CT, Corces VG. CTCF: an architectural protein bridging genome
topology and function. Nat Rev Genet. 2014;15:234–46.
doi:10.1038/nrg3663.

40. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. Genome architectures
revealed by tethered chromosome conformation capture and
population-based modeling. Nat Biotechnol. 2012;30:90–8.
doi:10.1038/nbt.2057.

41. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A,
Lajoie BR, et al. Iterative correction of Hi-C data reveals hallmarks of
chromosome organization. Nat Methods. 2012;9:999–1003.
doi:10.1038/nmeth.2148.

42. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2.
Nat Methods. 2012;9:357–9. doi:10.1038/nmeth.1923.

43. Boyle AP, Araya CL, Brdlik C, Cayting P, Cheng C, Cheng Y, et al.
Comparative analysis of regulatory information and circuits across distant
species. Nature. 2014;512:453–6. doi:10.1038/nature13668. https://www.
encodeproject.org/comparative/regulation/#Humanset9.

44. Ho JWK, Jung YL, Liu T, Alver BH, Lee S, Ikegami K, et al. Comparative
analysis of metazoan chromatin organization. Nature. 2014;512:449–52.
doi:10.1038/nature13415.

45. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al.
Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:137.
doi:10.1186/gb-2008-9-9-r137.

46. Breiman L. Random forests. Mach Learn. 2001;45:5–32.
47. Liaw A, Wiener M. Classification and regression by randomForest. R News.

2002;2:18–22.



Moore et al. Genome Biology  (2015) 16:110 Page 14 of 14

48. Hastie T. Kernel smoothing methods. In: Elements of Statistical Learning.
2nd. Springer-Verlag; 2009. doi:10.1007/b94608_6.

49. Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, et al.
Random forests for classification in ecology. Ecology. 2007;88:2783–92.

50. Moore BL. 3dgenome (release v0.1.0). Github. https://github.com/
blmoore/3dgenome.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit





REFERENCES

[1] Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and
mechanisms. Nature Reviews Molecular Cell Biology, 16(4): 245–257.

[2] Fraser J, Williamson I, Bickmore Wa, Dostie J (2015) An Overview of Genome
Organization and How We Got There: from FISH to Hi-C. Microbiology and
Molecular Biology Reviews, 79(3): 347–372.

[3] de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear
organization. Genes & development, 26(1): 11–24.

[4] van Steensel B, Dekker J (2010) Genomics tools for unraveling chromosome
architecture. Nature biotechnology, 28(10): 1089–1095.

[5] Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome con-
formation. Science (New York, N.Y.), 295(February): 1306–1311.
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