13,341 research outputs found

    The United Kingdom Ministry of Defence – the Case for Followership as a key Element of Leadership Development

    Get PDF
    Published in Strategic Management Quarterly (2015) Vol 3 Issue 4Using the Kelley (1992) Followership Style instrument this study explores the role and perceptions of Followership within the UK Ministry of Defence. In particular, within the Armed Services and the Civil Service it was apparent from the literature that only the RAF formally recognised the role of Followership within their Leadership staff development programmes, hence the research aimed to see whether this was reflected in self-perceptions of Followership Style and the extent to which it is applied within the organisation. The analysis concluded that the analysed sample (298 responses) produced an atypical profile compared to other studies that have used the instrument. The RAF showed statistically significant higher scores than the other Armed Services or the Civil Servants and scores increased with Rank/Grade. The analysis also highlighted that the individuals seemed not to be recognised as good Followers by their leaders, they appeared not to recognise their reports as good Followers and in all cases the organisation seemed not to recognise their value. These aspects provide scope for further research to better understand the organisational culture, processes and practices that appear to act as a barrier to the extraction of the benefits of having good Followers even in an area where Star Followers dominate

    Assembly, Structure, and Reactivity of Cu\u3csub\u3e4\u3c/sub\u3eS and Cu\u3csub\u3e3\u3c/sub\u3eS Models for the Nitrous Oxide Reductase Active Site, Cu\u3csub\u3eZ\u3c/sub\u3e*

    Get PDF
    Bridging diphosphine ligands were used to facilitate the assembly of copper clusters with single sulfur atom bridges that model the structure of the CuZ* active site of nitrous oxide reductase. Using bis(diphenylphosphino)amine (dppa), a [CuI4(μ4-S)] cluster with N–H hydrogen bond donors in the secondary coordination sphere was assembled. Solvent and anion guests were found docking to the N–H sites in the solid state and in the solution phase, highlighting a kinetically viable pathway for substrate introduction to the inorganic core. Using bis(dicyclohexylphosphino)methane (dcpm), a [CuI3(μ3-S)] cluster was assembled preferentially. Both complexes exhibited reversible oxidation events in their cyclic voltammograms, making them functionally relevant to the CuZ* active site that is capable of catalyzing a multielectron redox transformation, unlike the previously known [CuI4(μ4-S)] complex from Yam and co-workers supported by bis(diphenylphosphino)methane (dppm). The dppa-supported [CuI4(μ4-S)] cluster reacted with N3–, a linear triatomic substrate isoelectronic to N2O, in preference to NO2–, a bent triatomic. This [CuI4(μ4-S)] cluster also bound I–, a known inhibitor of CuZ*. Consistent with previous observations for nitrous oxide reductase, the tetracopper model complex bound the I– inhibitor much more strongly and rapidly than the substrate isoelectronic to N2O, producing unreactive μ3-iodide clusters including a [Cu3(μ3-S)(μ3-I)] complex related to the [Cu4(μ4-S)(μ2-I)] form of the inhibited enzyme

    Enhancing Perceptual Attributes with Bayesian Style Generation

    Full text link
    Deep learning has brought an unprecedented progress in computer vision and significant advances have been made in predicting subjective properties inherent to visual data (e.g., memorability, aesthetic quality, evoked emotions, etc.). Recently, some research works have even proposed deep learning approaches to modify images such as to appropriately alter these properties. Following this research line, this paper introduces a novel deep learning framework for synthesizing images in order to enhance a predefined perceptual attribute. Our approach takes as input a natural image and exploits recent models for deep style transfer and generative adversarial networks to change its style in order to modify a specific high-level attribute. Differently from previous works focusing on enhancing a specific property of a visual content, we propose a general framework and demonstrate its effectiveness in two use cases, i.e. increasing image memorability and generating scary pictures. We evaluate the proposed approach on publicly available benchmarks, demonstrating its advantages over state of the art methods.Comment: ACCV-201

    Telluric correction in the near-infrared: Standard star or synthetic transmission?

    Full text link
    Context. The atmospheric absorption of the Earth is an important limiting factor for ground-based spectroscopic observations and the near-infrared and infrared regions are the most affected. Several software packages that produce a synthetic atmospheric transmission spectrum have been developed to correct for the telluric absorption; these are Molecfit, TelFit, and TAPAS. Aims. Our goal is to compare the correction achieved using these three telluric correction packages and the division by a telluric standard star. We want to evaluate the best method to correct near-infrared high-resolution spectra as well as the limitations of each software package and methodology. Methods. We applied the telluric correction methods to CRIRES archival data taken in the J and K bands. We explored how the achieved correction level varies depending on the atmospheric T-P profile used in the modelling, the depth of the atmospheric lines, and the molecules creating the absorption. Results. We found that the Molecfit and TelFit corrections lead to smaller residuals for the water lines. The standard star method corrects best the oxygen lines. The Molecfit package and the standard star method corrections result in global offsets always below 0.5% for all lines; the offset is similar with TelFit and TAPAS for the H2O lines and around 1% for the O2 lines. All methods and software packages result in a scatter between 3% and 7% inside the telluric lines. The use of a tailored atmospheric profile for the observatory leads to a scatter two times smaller, and the correction level improves with lower values of precipitable water vapour. Conclusions. The synthetic transmission methods lead to an improved correction compared to the standard star method for the water lines in the J band with no loss of telescope time, but the oxygen lines were better corrected by the standard star method.Comment: 18 pages, 13 figures, Accepted to A&

    Statistical properties of fractures in damaged materials

    Full text link
    We introduce a model for the dynamics of mud cracking in the limit of of extremely thin layers. In this model the growth of fracture proceeds by selecting the part of the material with the smallest (quenched) breaking threshold. In addition, weakening affects the area of the sample neighbour to the crack. Due to the simplicity of the model, it is possible to derive some analytical results. In particular, we find that the total time to break down the sample grows with the dimension L of the lattice as L^2 even though the percolating cluster has a non trivial fractal dimension. Furthermore, we obtain a formula for the mean weakening with time of the whole sample.Comment: 5 pages, 4 figures, to be published in Europhysics Letter

    Quantitative multielement analysis using high energy particle bombardment

    Get PDF
    Charged particles ranging in energy from 0.8 to 4.0 MeV are used to induce resonant nuclear reactions, Coulomb excitation (gamma X-rays), and X-ray emission in both thick and thin targets. Quantitative analysis is possible for elements from Li to Pb in complex environmental samples, although the matrix can severely reduce the sensitivity. It is necessary to use a comparator technique for the gamma-rays, while for X-rays an internal standard can be used. A USGS standard rock is analyzed for a total of 28 elements. Water samples can be analyzed either by nebulizing the sample doped with Cs or Y onto a thin formvar film or by extracting the sample (with or without an internal standard) onto ion exchange resin which is pressed into a pellet

    A One-Hole Cu\u3csub\u3e4\u3c/sub\u3eS Cluster with N\u3csub\u3e2\u3c/sub\u3eO Reductase Activity: A Structural and Functional Model for Cu\u3csub\u3eZ\u3c/sub\u3e

    Get PDF
    During bacterial denitrification, two-electron reduction of N2O occurs at a [Cu4(μ4-S)] catalytic site (CuZ*) embedded within the nitrous oxide reductase (N2OR) enzyme. In this Communication, an amidinate-supported [Cu4(μ4-S)] model cluster in its one-hole (S = 1/2) redox state is thoroughly characterized. Along with its two-hole redox partner and fully reduced clusters reported previously, the new species completes the two-electron redox series of [Cu4(μ4-S)] model complexes with catalytically relevant oxidation states for the first time. More importantly, N2O is reduced by the one-hole cluster to produce N2 and the two-hole cluster, thereby completing a closed cycle for N2O reduction. Not only is the title complex thus the best structural model for CuZ* to date, but it also serves as a functional CuZ* mimic

    A Cu\u3csub\u3e4\u3c/sub\u3eS Model for the Nitrous Oxide Reductase Active Sites Supported Only by Nitrogen Ligands

    Get PDF
    To model the (His)7Cu4Sn (n = 1 or 2) active sites of nitrous oxide reductase, the first Cu4(μ4-S) cluster supported only by nitrogen donors has been prepared using amidinate supporting ligands. Structural, magnetic, spectroscopic, and computational characterization is reported. Electrochemical data indicates that the 2-hole model complex can be reduced reversibly to the 1-hole state and irreversibly to the fully reduced state

    Quasi-Periodic Oscillations from Magnetorotational Turbulence

    Full text link
    Quasi-periodic oscillations (QPOs) in the X-ray lightcurves of accreting neutron star and black hole binaries have been widely interpreted as being due to standing wave modes in accretion disks. These disks are thought to be highly turbulent due to the magnetorotational instability (MRI). We study wave excitation by MRI turbulence in the shearing box geometry. We demonstrate that axisymmetric sound waves and radial epicyclic motions driven by MRI turbulence give rise to narrow, distinct peaks in the temporal power spectrum. Inertial waves, on the other hand, do not give rise to distinct peaks which rise significantly above the continuum noise spectrum set by MRI turbulence, even when the fluid motions are projected onto the eigenfunctions of the modes. This is a serious problem for QPO models based on inertial waves.Comment: 4 pages, 2 figures. submitted to ap
    • …
    corecore