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Synopsis: The properties of bioinspired copper sulfide clusters were tuned 

using bridging diphosphines. 
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Abstract 

 

Bridging diphosphine ligands were used to facilitate the assembly of copper 

clusters with single sulfur atom bridges that model the structure of the CuZ* 

active site of nitrous oxide reductase. Using bis(diphenylphosphino)amine 

(dppa), a [CuI
4(μ4-S)] cluster with N–H hydrogen bond donors in the 

secondary coordination sphere was assembled. Solvent and anion guests 

were found docking to the N–H sites in the solid state and in the solution 

phase, highlighting a kinetically viable pathway for substrate introduction to 

the inorganic core. Using bis(dicyclohexylphosphino)methane (dcpm), a 

[CuI
3(μ3-S)] cluster was assembled preferentially. Both complexes exhibited 

reversible oxidation events in their cyclic voltammograms, making them 

functionally relevant to the CuZ* active site that is capable of catalyzing a 

multielectron redox transformation, unlike the previously known [CuI
4(μ4-S)] 

complex from Yam and co-workers supported by 

bis(diphenylphosphino)methane (dppm). The dppa-supported [CuI
4(μ4-S)] 

cluster reacted with N3
–, a linear triatomic substrate isoelectronic to N2O, in 

preference to NO2
–, a bent triatomic. This [CuI

4(μ4-S)] cluster also bound I–, a 

known inhibitor of CuZ*. Consistent with previous observations for nitrous 

oxide reductase, the tetracopper model complex bound the I– inhibitor much 

more strongly and rapidly than the substrate isoelectronic to N2O, producing 

unreactive μ3-iodide clusters including a [Cu3(μ3-S)(μ3-I)] complex related to 

the [Cu4(μ4-S)(μ2-I)] form of the inhibited enzyme. 

Introduction 

Nitrous oxide (N2O), a potent greenhouse gas and ozone layer 

depletion agent, is consumed in nature by nitrous oxide reductase 

(N2OR) during bacterial denitrification.1 N2O activation and reduction 

occurs at a tetracopper sulfide active site within N2OR, whose workings 

remain unclear. Two forms of this cluster have been characterized 

(Scheme 1a): one with a [Cu4(μ4-S)] stoichiometry called CuZ*2 and 
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one with a [Cu4(μ4-S)(μ2-S)] stoichiometry called CuZ.3 Although both 

CuZ* and CuZ have been proposed as the active form in nature, recent 

studies indicate that only CuZ* in its CuI
4 oxidation state is kinetically 

competent to mediate the two-electron reduction of N2O under 

catalytically relevant conditions.4 However, little is known about the 

intimate workings of CuZ* outside of computational studies,5 and 

studies on the enzyme itself are complicated by the fact that purified 

N2OR invariably contains mixtures of CuZ and CuZ*.4 As a result, 

spectroscopic data on the active, fully reduced CuZ* are largely absent 

despite copious available data on other CuZ* oxidation states.1,4 

Inorganic model studies could, in principle, lend further understanding 

from experimental data related to cluster assembly, redox behavior, 

spectroscopic features, and chemical reactivity and mechanism. 

However, such studies are hindered by the fact that the structural 

motif present in CuZ* is unique in synthetic coordination chemistry. 

The only [CuxSy] cluster ever reported to exhibit N2O reactivity does 

not reproduce the [Cu4S1] stoichiometry in CuZ*,6 limiting the insight 

that can be gained. In fact, not only do complexes with [Cu4(μ4-S)] 

cores have almost no precedent, but more generally the rational 

construction of copper-containing clusters with single sulfur atom 

bridges remains a synthetic challenge.7 Much more common is the 

construction of copper clusters bridged by multiple sulfur atoms, for 

example, with [Cu3S2], [Cu12S6], [Cu13S2], or [Cu20S10] cores, that bear 

little resemblance to CuZ* or other bioinorganic active sites.8,9 
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Scheme 1. (a) N2O Reduction by Bioinorganic Copper Sulfide Clusters CuZ* and/or 
CuZ (His = Histidine) and (b) Synthetic Copper Sulfide Clusters Discussed in This 

Report 

 

The complex [(μ2-dppm)4Cu4(μ4-S)]2+ [1; dppm = 

bis(diphenylphosphino)methane; see Scheme 1] represents the only 

known example of a synthetic [Cu4(μ4-S)] cluster prior to this report.10 

This complex has been studied in great detail for its optical properties 

but is limited in its ability to serve as a functional model for CuZ*.11 

Not only is air-stable 1 relatively inert in nature, but also it does not 

exhibit the reversible electrochemistry necessary to model a 

bioinorganic active site, such as CuZ*, that mediates a multielectron 

redox transformation. Some of these drawbacks in the ability of 1 to 

model CuZ* may stem from its use of phosphorus donors, as opposed 

to the nitrogen donors of CuZ*, to stabilize the [Cu4(μ4-S)] core. 

However, spectroscopic and computational analyses of CuZ* indicate 

that its redox-active molecular orbital is largely localized (83%) on the 

four copper centers and the bridging sulfur,12 implying that the 

supporting nitrogen donors are limited in their orbital contributions to 

chemically relevant frontier orbitals. Computational analysis of 1 has 

similarly indicated that its redox-active molecular orbital is largely 

localized (84%) on the four copper centers and bridging sulfur.13 

https://dx.doi.org/10.1021/ic501720h
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Because of these similar electronic structures as well as the 

demonstrated, unique ability of dppm to control the Cu:S 

stoichiometry, we deemed that derivatives of complex 1 merited 

further examination. 

 

Fortunately, the bridging diphosphine ligands in use for 

constructing 1 are readily tuned to overcome these kinetic and 

thermodynamic shortcomings. In this contribution, we report the 

synthesis and characterization of new copper monosulfide clusters 

([(μ2-dppa)4Cu4(μ4-S)][PF6]2 (2) and [(μ2-dcpm)3Cu3(μ3-

S)][PF6]·OCMe2 (3); see Scheme 1) that assemble to model structural 

features relevant to the [Cu4S] core of CuZ*, including the presence of 

hydrogen-bond donors in the secondary coordination sphere. These 

complexes also exhibit reversible electrochemistry, and one (2) also 

presents chemical reactivity toward a substrate that is isoelectronic to 

N2O, azide (N3
–), and toward a known inhibitor of the N2OR enzyme, 

iodide (I–). Competition experiments reveal that the linear triatomic, 

N3
–, binds more rapidly than a bent triatomic, nitrite (NO2

–), but much 

less rapidly than the enzyme inhibitor, I–. 

Results and Discussion 

Cluster Assembly and Structure 
 

One design strategy we chose to pursue involved modifying 

dppm-supported 1 to include hydrogen-bond donors in the secondary 

coordination sphere. It is well recognized that secondary-sphere 

hydrogen-bonding interactions are crucial to the design of functional 

models of metalloenzymes.14 Building such a model for CuZ* could, in 

principle, provide kinetically viable pathways for the introduction of 

substrates to the inorganic [Cu4(μ4-S)] core. Indeed, for N2OR itself, it 

is thought that hydrogen bonding from the N–H groups of lysine and 

histidine residues located nearby to the CuZ* cluster may assist in N2O 

binding and subsequent N2 extrusion.5,15 In order to construct a copper 

sulfide cluster with hydrogen-bond donors, we targeted the use of 

bis(diphenylphosphino)amine (dppa) in place of dppm. The second 

strategy we chose to pursue involved modifying 1 to render the copper 

sulfide core more electron-rich, with the goal of stabilizing higher 

oxidation states and thereby obtaining reversible electrochemistry. In 

https://dx.doi.org/10.1021/ic501720h
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order to construct a more electron-rich copper sulfide cluster, we 

targeted the use of bis(dicyclohexylphosphino)methane (dcpm) in 

place of dppm. 

 

The slow addition of a methanolic solution of Na2S (0.5 equiv) to 

an acetone solution of colorless [(μ2-dppa)2Cu2(NCCH3)2][PF6]2
16 

produced a rapid color change to bright orange. Slow diffusion of 

diethyl ether vapors into the acetone solution produced 2 as pale-

orange plates. Combustion analysis of these plates, upon crushing and 

drying, was consistent with the dicationic tetracopper formulation. X-

ray diffraction analysis of one of the plates confirmed the assembly of 

a [Cu4(μ4-S)] core stabilized by four bridging dppa ligands, along with 

the presence of two PF6
– counterions per tetracopper cluster. 

Additionally, we believe that a minor fraction of the product mixture 

was the tricopper species [(μ2-dppa)3Cu3(μ3-S)][PF6] (2′) because a 

single crystal of that species also was identified among the sample and 

analyzed by X-ray diffraction (see Figures S44 and S45 in the 

Supporting Information, SI). However, no spectroscopic evidence for 

the formation of 2′ was obtained, indicating that it is formed only in 

trace amounts under these reaction conditions. 

 

The core structure of 2 is shown in Figure 1a. Unlike 1, which 

features a relatively symmetric [Cu4(μ4-S)] core [neighboring Cu···Cu 

distances of 2.869(1)–3.129(1) Å],10 the inorganic core of 2 is 

asymmetric. While three of the copper centers in 2 are close together 

[Cu(1)···Cu(2), 2.6571(7) Å; Cu(2)···Cu(3), 2.7184(4) Å], a fourth 

copper center is significantly displaced from the others [Cu(4)···Cu(1), 

3.1005(5) Å; Cu(4)···Cu(3), 3.5365(6) Å]. Two acetone solvent 

molecules and a PF6
– anion engage in hydrogen bonding with N–H 

groups in the secondary coordination sphere. The two acetone 

molecules are associated with the N–H residues of the two bridging 

dppa ligands directly bound to Cu(4), in essence “pulling” Cu(4) away 

from the rest of the cluster (Figure 1a). Such a phenomenon is 

impossible for 1, which lacks any hydrogen-bond donors. Similar 

hydrogen-bonding motifs have been noted for [(μ2-dppa)3Cu3(μ3-

SH)2][BF4].17 The environment of the sulfur center in 2 is best 

described as a seesaw shape (τ4 = 0.64).18 
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Figure 1. Solid-state structures of (a) 2·2OCMe2 and (b) 3 determined by X-

ray crystallography. Core atoms are shown as 50% probability ellipsoids, 

phosphine substituents are shown as wireframes, and C–H hydrogen atoms 

have been omitted for clarity. Cocrystallized anions and solvent molecules are 

shown only if engaged in hydrogen bonding to the cationic unit. N–H 

hydrogen atoms are shown in calculated positions. Space-filling models of the 

cationic portions of (c) 2′ and (d) 3, both based on crystallographically 

determined coordinates and viewed down the sulfur (pseudo-)C3 axis, with all 

hydrogen atoms shown in calculated positions. Atom colors: C, gray; H, 

white; Cu, brown; F, green; N, blue; O, red; P, orange; S, yellow. 

The structural parameters within the [Cu4(μ4-S)] cores of CuZ*, 

CuZ, 1, and 2 are compared in Table 1. The distorted core in 2 

accesses a relatively large span of Cu···Cu distances, making it the 

most accurate model of the distorted core in CuZ* reported to date. As 

judged by τ4 values, the μ4-sulfide ligands in all of the tetracopper 

clusters have seesaw geometries, with the τ4 values for 1 and 2 more 

closely matching CuZ* than CuZ. These τ4 values further confirm that 2 

contains a more structurally faithful inorganic core model of CuZ* at 

the sulfur bridge, which may play an important role in N2O docking in 

N2OR.5 
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Table 1. Structural Comparisons of CuZ*, CuZ, 1, and 2 

parameter CuZ*a CuZ
b 1c 2 

Cu···Cu (Å) 2.54d 2.83d 2.869(2)d 2.6571(7)d 

  2.56d 2.84d 2.869(2)d 2.7184(4)d 

  3.00d 2.95d 3.128(1)d 3.1005(5)d 

  3.33d 3.38d 3.128(1)d 3.5365(6)d 

  3.36e 3.41e 4.169(2)e 3.9697(6)e 

  4.43e 4.60e 4.303(1)e 4.2857(6)e 

Cu−μ4-S (Å) 2.09 2.19 2.267(1) 2.2452(6) 

  2.16 2.22 2.267(1) 2.2619(8) 

  2.21 2.35 2.269(2) 2.2418(7) 

  2.25 2.44 2.269(2) 2.2217(8) 

τ4
f 0.66 0.71 0.59 0.64 

aFrom analysis of the coordinates from PDB accession code 1QNI. See ref 2. 
bFrom analysis of the coordinates from PDB accession code 3SBR. See ref 3. 
cDuplicate values from crystallographic symmetry equivalence. See ref 10. 
dNeighboring Cu···Cu distance. 
eCross-cluster Cu···Cu distance. 
fτ4 value of the μ4-sulfur. See ref 18. 

 

In addition to the hydrogen-bonding interactions observed in the 

solid-state structure of 2, they appear to be present in the solution 

phase, as well. First, solutions of 2 are air-sensitive, unlike solutions of 

1, which may imply that the N–H groups play a role in transporting O2 

from air to the [Cu4(μ4-S)] core of 2.19 Second, the 31P NMR spectra of 

2 were highly solvent-dependent. A sample of 2 that had been 

synthesized in and crystallized from acetone, and therefore was 

expected to have acetone guests docked to the ligand periphery, 

exhibited a single broad 31P NMR resonance in acetone-d6 at 36.6 ppm. 

Dissolving the same sample in acetonitrile-d3 resulted in two sharper 
31P NMR resonances at 36.8 and 36.5 ppm, respectively. Thinking that 

the 36.8-ppm signal corresponded to a species where acetone guest 

molecules had been displaced by acetonitrile guest molecules, we then 

conducted the synthesis and precipitation of 2 in acetonitrile. 

Analyzing this sample in acetonitrile-d3 revealed a single sharp 31P 

NMR resonance at 36.8 ppm. A similar phenomenon was observed with 

dimethyl sulfoxide-d6. Collectively, these data (Figure 2) provide clear 

evidence that the docking of solvent molecules to the periphery of 2 

via hydrogen bonding is a phenomenon that exists in the solution 

phase and that exchange of the guest molecules can occur at ambient 

conditions. 
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Figure 2. 31P NMR spectra of 2 in (a) acetone-d6 after preparation in acetone, (b) 
acetonitrile-d3 after preparation in acetone, (c) acetonitrile-d3 after preparation in 
acetonitrile, and (d) dimethyl sulfoxide-d6 after preparation in acetone. 

The addition of Na2S (0.5 equiv) to [(μ2-dcpm)2Cu2][PF6]2
20 

resulted in incomplete conversion to a new species, as judged by NMR 

spectroscopy. Complete conversion to the new species only was 

attained when 0.67 equiv of Na2S was used. Consistent with this 

stoichiometry, crystallization of the product by slow diffusion of diethyl 

ether vapors into an acetone solution provided pale-yellow crystals of 

3. X-ray diffraction analysis confirmed the monocationic tricopper 

formulation and revealed a [Cu3(μ3-S)] core that has limited precedent 

in the literature (Figure 1b).7a,7b Presumably, the bulkier cyclohexyl 

substituents preclude the formation of a tetracopper cluster and 

preferentially direct the assembly of a tricopper core in order to ease 

steric congestion. Accordingly, the Cu···Cu distances in 3 [3.5684(3)–

3.6753(3) Å] are significantly longer than those in 1 and 2. Parts c 

and d of Figure 1 compare space-filling models of [Cu3S] complexes 2′ 

and 3, further highlighting the increased steric congestion imparted by 

dcpm. The geometry of the sulfur center in 3 is trigonal-pyramidal 

with approximate C3 symmetry [Cu–S–Cu angles: 107.61(2)–

111.78(2)°]. Complex 3 complements the recent characterization of a 

[Cu3(μ3-S)] cluster by Murray and co-workers,7a which features a 

planar rather than pyramidal S2– ligand and was characterized in 
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higher oxidation states (CuIICuIICuI and CuIICuICuI) than 3 (CuICuICuI), 

possibly because of the use of hard nitrogen ligands instead of soft 

phosphorus ligands to support the cluster. 

 

Electrochemical and Photophysical Characterization 
 

The N2OR enzyme catalyzes a multielectron redox 

transformation, implying that the CuZ* active site can stabilize multiple 

redox states. Accordingly, any functional model of CuZ* should exhibit 

reversible electrochemical behavior. The dppm complex, 1, was 

reported previously to have three ill-defined, irreversible oxidation 

events with onset at 0.27 V versus [FeCp2]+/0.10 Analysis of the dppa 

analogue, 2, instead revealed a reversible oxidation event by cyclic 

voltammetry (CV), cathodically shifted to −0.12 V (Figure 3a), 

followed by three ill-defined, irreversible oxidation events (Table 2 and 

Figure S1 in the SI). The significant cathodic shift resulting from 

substituting dppm with the more strongly donating dppa is well 

precedented in various coordination complexes.21 The dcpm analogue, 

3, also exhibited a fully reversible oxidation event in its CV, further 

cathodically shifted to −0.35 V (Figure 3b), followed by three 

irreversible oxidations (Table 2 and Figure S4 in the SI). Assuming 

that each copper center can access the CuI and CuII states only, the 

presence of four oxidation events for the tricopper complex, 3, implies 

that the μ3-S2– ligand also participates in oxidation chemistry. Such 

noninnocent behavior of bridging sulfur atoms is well documented 

through spectroscopic and computational analyses of dicopper 

complexes with bridging [(S)2]n− units.22 For comparison to the data 

reported here, a lower limit can be placed on the CuIICuI
3/CuI

4 

potential of CuZ* based on the fact that methyl viologen is required to 

access the fully reduced state.4 Using the reduction potential of methyl 

viologen23 as a lower limit and converting from the SCE scale to the 

[FeCp2]+/0 scale using the method of Pavlishchuk and Addison,24 we 

estimated the reduction potential of CuZ* as E0 > −0.78 V versus 

[FeCp2]+/0.25 While the precise reduction potential for CuZ* is not 

known, the model complexes in this work also fall above this lower 

limit. 

https://dx.doi.org/10.1021/ic501720h
http://epublications.marquette.edu/
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http://pubs.acs.org/doi/full/10.1021/ic501720h#fig3
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http://pubs.acs.org/doi/full/10.1021/ic501720h#notes-1
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Figure 3. Cyclic voltammograms of (a) 2 and (b) 3 in CH3CN (0.1 M Bu4NPF6, 100 mV 
s–1 scan rate, Pt working electrode). Potentials are referenced to [FeCp2]+/0. Insets: 

Plots of the square root of the scan rate (V s–1) versus current (μA) in the forward 
direction for the first oxidations. The linear dependence indicates reversible 
electrochemical behavior (R2 = 0.99614 and 0.99993, respectively). 

Table 2. Electrochemical and Photophysical Properties of 1–3 

property 1a 2 3 

Eoxidation (V)b 0.27, 1.25, 
1.39 

–0.12 (rev.),c 0.27, 0.88, 
1.55 

–0.35 (rev.),c 0.29, 0.86, 
1.58 

λemission 
(nm)d 

618 704 642 

Φe 0.22 0.067 0.0007 
aFrom ref 10. 
bReferenced to [FeCp2]+/0, from CV in CH3CN (0.1 M [Bu4N][PF6], Pt working electrode, 
and 100 mV s–1 scan rate). 
cReversible. 
dEmission measured with an excitation wavelength of 415 nm in CH3CN at room 
temperature. 

https://dx.doi.org/10.1021/ic501720h
http://epublications.marquette.edu/
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eQuantum yield measured with an excitation wavelength of 415 nm in CH3CN at room 

temperature for all compounds. 

 

In light of the noteworthy photophysical properties previously 

noted for 1,10 we examined the photophysical characteristics of 2 and 

3 for comparison. The lowest-energy absorption of 1 is at 285 nm, a 

feature that shifts to 284 nm for 2 and 279 nm for 3.26 As expected, 

these fully reduced complexes lack any low-energy absorption in the 

450–550 nm range observed for the resting, one-hole states of CuZ* 

and CuZ.1 Like 1, both 2 and 3 are luminescent and glow orange upon 

excitation. The emission wavelengths and quantum yields were ligand-

dependent (Table 2). The quantum yield measured for 3 was 

significantly lower than those of 1 and 2, indicating a special ability of 

the [Cu4(μ4-S)] motif to support efficient excited-state chemistry and 

bright emission. 

 

Reactivity toward N3
– and I– 

 

N2O is notoriously inert toward inorganic systems. Very few 

transition-metal coordination complexes react with gaseous N2O,27 and 

fewer still of these systems also contain copper, a metal of low azo- 

and oxophilicity.6,28 Accordingly, we have not observed any evidence 

by spectroscopic methods for reactivity between N2O and 1, 2, or 3 

under the reaction conditions we have screened thus far. However, we 

hypothesized that relevant reactivity would be observed with other 

triatomic substrates that, while closely related to N2O in electronic 

structure, possess overall anionic charge. Particularly fascinating to us 

were azide (N3
–), which is a linear triatomic anion, and nitrite (NO2

–), 

which is a bent triatomic anion. Although N2O is a linear triatomic 

molecule in its ground state, computational studies have suggested 

that significant N–N–O bending is observed during its binding to the 

CuZ* cluster in N2OR.5 In this regard, N3
– resembles the ground-state 

geometry of N2O, while NO2
– resembles the transition state structure 

proposed for N2O binding to CuZ*. We also chose to examine the 

chemistry of our model system 2 with iodide (I–), a known inhibitor of 

N2OR.29 

 

Complex 2 reacted readily with excess NaN3 at room 

temperature, producing a mixture of two complexes that were both 

identified crystallographically (Scheme 2). One of the products was the 

https://dx.doi.org/10.1021/ic501720h
http://epublications.marquette.edu/
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[Cu3(μ3-S)] complex, 2′, and the second product was [(μ2-

dppa)3Cu3(μ3-N3)2][PF6] (4). Because of their similar solubility 

properties, we were not able to separate 2′ and 4, which were 

produced in a ratio of 2.7:1 in the crude reaction mixture (Figures S22 

and S23 in the SI). However, 4 was produced as the major copper-

containing product from the reaction between 2 and N3SiMe3; this 

method provided us with pure samples of 4 for full characterization 

(Figures S24–S26 in the SI). The IR spectrum of 4 featured a 

characteristic azide vibration at 2046 cm–1, shifted from 2103 cm–1 in 

NaN3. The solid-state structure of 4 (Figure 4) featured three 

tetrahydrofuran (THF) molecules (the solvent of crystallization) bound 

to each of the three N–H groups in the secondary coordination sphere. 

The cationic portion of 4 possessed approximate C3 symmetry, with 

the N3 units deviating slightly from the C3 axis. The end-on, μ3 binding 

of N3
– to the multicopper cluster contrasts with the proposed side-on 

binding of N2O to CuZ*.5 Under the same reaction conditions, NaNO2 

did not react with 2. 

 

https://dx.doi.org/10.1021/ic501720h
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/ic501720h#notes-1
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Scheme 2. Reactivity of the [CuI

4(μ4-S)] Cluster 2 with NaN3 and NaI 

 

https://dx.doi.org/10.1021/ic501720h
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Figure 4. Solid-state structures of (a) 4·3THF and (b) 5 determined by X-ray 
crystallography. Core atoms are shown as 50% probability ellipsoids, phosphine 

substituents are shown as wireframes, and C–H hydrogen atoms have been omitted 
for clarity. Cocrystallized anions and solvent molecules are shown only if engaged in 
hydrogen bonding to the cationic unit. N–H hydrogen atoms are shown in calculated 
positions. Atom colors: C, gray; H, white; Cu, brown; F, green; I, purple; N, blue; O, 
red; P, orange; S, yellow. 

Complex 2 also reacted readily with excess NaI at room 

temperature, producing a mixture of two new complexes that were 

each identified crystallographically (Scheme 2). One of the products 

was [(μ2-dppa)3Cu3(μ3-S)(μ3-I)] (5; Figure 4), and the second product 

was [(μ2-dppa)3Cu3(μ3-I)2][PF6] (6; Figure S46 in the SI). A toluene 

extraction was used to separate neutral 5 from cationic 6, which were 

produced in a ratio of 1:5.8 in the crude reaction mixture (Figures 

S27–S31 in the SI). We suspect that Na2S was a byproduct of this 

reaction, accounting for the displaced sulfide equivalents. The solid-

https://dx.doi.org/10.1021/ic501720h
http://epublications.marquette.edu/
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state structures of both 5 and 6 featured roughly C3-symmetric 

tricopper clusters. In the case of 6, one THF molecule was found 

hydrogen bonding to a N–H group in the secondary coordination 

sphere. In the case of 5, no such interactions were detected (Figure 

4). Presumably, the N–H groups in 5 are less acidic because of the 

neutral charge of the complex and therefore do not engage as readily 

in hydrogen-bonding interactions. The crystal structure of N2OR under 

iodide inhibition features an iodide-bound CuZ* cluster with a [Cu4(μ4-

S)(μ2-I)] core that is related to the [Cu3(μ3-S)(μ3-I)] core found in 5, 

although the Cu···μ2-I distances observed in the enzyme are shorter 

(2.5 and 2.8 Å) than the Cu···μ3-I distances observed in 5 

[2.8632(12), 2.9390(14), and 2.9481(12) Å].29 For comparison, the 

Cu···μ3-I distances in 6 ranged from 2.7152(9) to 2.7608(8) Å. 

 

In N2OR, the CuZ* cluster is inhibited from reacting with its 

normal substrate, N2O, when I– is present. Similarly, model complex 2 

is inhibited from reacting with N3
– by the presence of I–. Several 

experiments were used to establish this behavior. First of all, the 

reaction of 2 with a 1:1 mixture of NaI/NaN3 produced 5 and 6 with no 

evidence for the formation of 2′ or 4 by 31P NMR (Figures S33–S35 in 

the SI), indicating the strong kinetic preference for the I– reaction with 

the [Cu4(μ4-S)] core over the N3
– reaction. The reaction of 4 with 

excess NaI cleanly produced 6 (Figures S36–S38 in the SI), while no 

reaction was observed between NaN3 and either 5 or 6 (Scheme 3 and 

Figures S39–S41 in the SI). This set of experiments provides further 

indication that I– binds strongly to the multicopper clusters and inhibits 

a reaction with an otherwise competent substrate, N3
–, in analogy to 

CuZ* inhibition. 

 

 
Scheme 3. Competitive Binding of I– over N3

– 

  

https://dx.doi.org/10.1021/ic501720h
http://epublications.marquette.edu/
http://pubs.acs.org/doi/full/10.1021/ic501720h#fig4
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/ic501720h#notes-1
http://pubs.acs.org/doi/full/10.1021/ic501720h#notes-1
http://pubs.acs.org/doi/full/10.1021/ic501720h#sch3
http://pubs.acs.org/doi/full/10.1021/ic501720h#notes-1


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Inorganic Chemistry, Vol 53, No. 19 (2014): pg. 10611-10619. DOI. This article is © American Chemical Society and 
permission has been granted for this version to appear in e-Publications@Marquette. American Chemical Society does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from American Chemical Society. 

17 

 

Conclusions 

In conclusion, the self-assembly of [Cun(μn-S)] clusters 

structurally related to the CuZ* site of N2OR was observed using 

bridging diphosphine supporting ligands. The identity of the 

diphosphine unit controlled the nature of the cluster that assembled, 

enabled tuning of thermodynamic reduction potentials of the clusters, 

and was used to introduce hydrogen-bond donors to the secondary 

coordination sphere of one model. Reactivity studies of this [CuI
4(μ4-

S)] model with various anions provided information related to the 

different binding preferences of such copper–sulfur clusters. 

Specifically, the reactivity data presented here indicate that the 

[CuI
4(μ4-S)] model complex 2 binds anions in the following order of 

preference: I– > N3
– > NO2

–. These reactions resulted in a breakdown 

of the tetracopper cluster to generate various tricopper clusters, in 

some cases with displacement of the sulfide unit. Such loss of 

nuclearity and stoichiometry is likely prevented for CuZ* by the rigid 

secondary structure provided by N2OR,1,5 highlighting an important 

challenge in modeling this fascinating active site. Further tuning of 

these clusters through the design of bridging diphosphine units will be 

pursued with emphasis on enabling reactivity with N2O itself. 

Experimental Section 

General Considerations 
 

Unless otherwise specified, all reactions and manipulations were 

performed under purified N2 in a glovebox or using standard Schlenk-

line techniques. Glassware was oven-dried prior to use. Acetone and 

methanol were degassed with N2, dried over K2CO3, and then distilled 

and stored over activated 3-Å molecular sieves. Other reaction 

solvents (diethyl ether, toluene, tetrahydrofuran, and 

dichloromethane) were sparged with argon and dried using a Glass 

Contour Solvent System built by Pure Process Technology, LLC. Unless 

otherwise specified, all chemicals were purchased from commercial 

sources and used without further purification. 

 

  

https://dx.doi.org/10.1021/ic501720h
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Physical Measurements 
 

NMR spectra were recorded at ambient temperatures using a 

Bruker Avance DPX-400 or a Bruker Avance DRX-500 MHz 

spectrometer. 1H NMR chemical shifts were referenced to residual 

solvent peaks. 31P NMR chemical shifts were referenced to external 

H3PO4 (δ = 0). The following data acquisition parameters were used for 

quantative 31P NMR spectroscopy: single pulse, 8.00 μs; power level, 

−3.00 dB; frequency offset of the third nucleus, −748516.887 ppm; 

recycle delay, 10 s; number of scans, 128. The signal-to-noise ratio 

calculated for 31P NMR using these parameters was 0.8%. Fourier 

transform infrared (FT-IR) spectra were recorded on solid samples in a 

glovebox using a Bruker ALPHA spectrometer fitted with a diamond-

ATR detection unit. Elemental analyses were performed by the Midwest 

Microlab, LLC, Indianapolis, IN. Deuterated solvents were degassed by 

repeated freeze–pump–thaw cycles and then stored over 3-Å 

molecular sieves. UV–vis absorbance spectra were taken at room 

temperature using a Cary 300 Bio UV–vis spectrophotometer. 

Fluorescence emission spectra were taken at room temperature using 

a customized Fluorolog (Horiba Jobin Yvon) modular 

spectrofluorometer. Luminescence quantum yields were determined 

based on eq 1, where A is the measured absorbance at the excitation 

wavelength and I is the integrated emission intensity when samples 

were excited at 415 nm. A 7.10 × 10–4 M solution of compound 1 (Φ = 

0.22;10 excitation wavelength = 415 nm) in MeCN was used as the 

standard reference solution. Samples for emission measurements were 

prepared as solutions of compounds 2 and 3, in MeCN, at 

concentrations of 5.66 × 10–4 and 3.14 × 10–3 M, respectively. 

 

(1) 

 

Electrochemical data were measured at room temperature using 

a WaveNow USB potentiostat from Pine Research Instrumentation. In 

a classic three-electrode system, a platinum working electrode, a 

platinum counter electrode, and a Ag/AgNO3 (0.01 M AgNO3/0.1 M 

Bu4NPF6 in MeCN) reference electrode were used. Compounds 2 and 3 

were dissolved in a 0.1 M solution of Bu4NPF6 in MeCN at 1.88 × 10–3 

M concentration. Electrochemical measurements were referenced to a 

https://dx.doi.org/10.1021/ic501720h
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1.88 × 10–3 M solution of FeCp2
+/0 in the same MeCN electrolyte 

solution. 

 

X-ray Crystallography 
 

X-ray crystallography data were collected at the X-ray Structural 

Laboratory at Marquette University (Milwaukee, WI) for complexes 2, 

2′, 3, 4, and 5. Single-crystal X-ray diffraction data were collected at 

100 K with an Oxford Diffraction SuperNova κ diffractometer equipped 

with dual microfocus Cu/Mo X-ray sources, X-ray mirror optics, an 

Atlas CCD detector, and a low-temperature Cryojet device. The data 

were processed with the CrysAlisPro program package (Oxford 

Diffraction Ltd., 2010) typically using a numerical Gaussian absorption 

correction (based on the real shape of the crystal) followed by an 

empirical multiscan correction using the SCALE3 ABSPACK routine. The 

structures were solved using the SHELXS program and refined with the 

SHELXL program30 within the Olex2 crystallographic package.31 All 

computations were performed on an Intel PC computer under Windows 

7 OS. X-ray crystallography data were collected at the University of 

Illinois at Chicago for complex 6. Single-crystal X-ray diffraction data 

were collected at 200 K with a Bruker SMART X2S benchtop 

diffractometer fitted with an Oxford Cryostreams Desktop Cooler. The 

structure was solved using SHELXS and refined with SHELXL.30 

 

Most of the structures contain a certain degree of disorder, 

which was detected in difference Fourier syntheses of the electron 

density and was taken care of using the capabilities of the SHELX 

package. In most cases, hydrogen atoms were localized in difference 

syntheses of the electron density but were refined using appropriate 

geometric restrictions on the corresponding bond lengths and bond 

angles within a riding/rotating model (torsion angles of the Me 

hydrogen atoms were optimized to better fit the residual electron 

density). The particular nonstandard details of the structure solution 

and refinement are as indicated in the figure captions included as SI. 

 

Preparation of Bis(diphenylphosphino)amine (dppa) 
 

A literature procedure was adapted for the isolation of dppa.32 

Toluene (30 mL), chlorodiphenylphosphine (3.30 mL, 18.4 mmol), and 

https://dx.doi.org/10.1021/ic501720h
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hexamethyldisilazane (1.92 mL, 9.23 mmol) were added sequentially 

to a 100 mL three-necked round-bottom flask inside a glovebox. Upon 

the addition of hexamethyldisilazane, a white precipitate began to 

form. The three necks were then equipped with a glass stopper, a 

reflux condenser fitted with a vacuum adaptor and a flow regulator, 

and a vacuum adaptor with a flow regulator, respectively. Once 

assembled and internally sealed, the flask was removed from the 

glovebox, connected to a Schlenk line, and refluxed at 125 °C for 3 h. 

During reflux, the solution appeared to turn pale yellow with no 

precipitate present. After reflux, the solution was cooled to room 

temperature and the reflux condenser was exchanged for a glass 

stopper. Volatiles were then removed by vacuum evaporation 

(evaporation removes not only the toluene but also the byproduct 

Me3SiCl). The remaining solid after evaporation was white. While the 

flask was under vacuum, the solid was pumped back into the 

glovebox. It was then washed with diethyl ether (2 × 10 mL) and 

dried. Yield of dppa: 2.292 g, 64%. NMR spectroscopy of the isolated 

product matches that of the material purchased from a commercial 

vendor (Strem). 1H NMR (500 MHz, CD3CN): δ 4.33 (s, 1H, N–H), 

7.33–7.38 (m, 20H, phenyls). 31P{1H} NMR (500 MHz, CD3CN): δ 41.6 

(s). 

 

Preparation of Dicopper Precursor Complexes 
 

Reported literature procedures for [(μ2-

dppa)2Cu2(MeCN)4][PF6]2
16 and [(μ2-dcpm)2Cu2][PF6]2

20 were used with 

the following modifications. In our hands, the reported procedure 

produced [(μ2-dppa)2Cu2(MeCN)2][PF6]2 with only two coordinated 

acetonitrile molecules rather than four, which was confirmed by 1H 

NMR integration in DMSO-d6. The molecular weight for [(μ2-

dppa)2Cu2(MeCN)2][PF6]2 (1269.78 g mol–1) was then used for all 

subsequent stoichiometric calculations. In the preparation of [(μ2-

dcpm)2Cu2][PF6]2, CH2Cl2 was used as the reaction solvent. 

 

Preparation of [(μ2-dppa)4Cu4(μ4-S)][PF6]2 (2) 
 

[(μ2-dppa)2Cu2(MeCN)2][PF6]2 (1.00 g, 0.787 mmol) was added 

to a flask charged with acetone (30 mL) and a magnetic stir bar. In a 

separate vessel, Na2S (0.0307 g, 0.393 mmol) was stirred in methanol 

https://dx.doi.org/10.1021/ic501720h
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(10 mL) until completely dissolved. The methanol solution of Na2S was 

then added to the [(μ2-dppa)2Cu2(MeCN)2][PF6]2 solution dropwise, 

with stirring, at room temperature. Once all of the Na2S solution had 

been added, the resulting deep-orange reaction mixture was stirred at 

room temperature for 3 h. The volume was reduced to 20 mL by 

vacuum evaporation, and then the solution was pipet-filtered through 

Celite to remove NaPF6. The filtered solution was then completely 

evaporated and reconstituted in acetone (4 mL). Diethyl ether 

(approximately 10–12 mL) was slowly added, causing a bright-yellow 

precipitate to form. The yellow precipitate was collected by vacuum 

filtration and dried under vacuum. Yield of 2: 0.593 g, 71%. Orange 

crystals may be obtained by dissolving yellow 2 in a minimum amount 

in acetone and allowing diethyl ether vapors to diffuse in through a 

pin-sized hole. 1H NMR (500 MHz, acetone-d6): δ 2.08 (s, coordinated 

acetone), 6.06 (s, N–H), 7.12–7.39 (m, 80H, phenyls). Note: 

Integration values for the N–H and coordinated solvent resonances 

were consistently lower than expected, possibly because of exchange 

processes with free solvent. 31P{1H} NMR (500 MHz, acetone-d6): δ 

36.6 (s, dppa), −145.8 (sept, J = 707.5 Hz, PF6
–). FT-IR (cm–1): 3297 

(N–H), 3052, 1481, 1434, 1098, 832, 734, 688, 555, 521, 481. Anal. 

Calcd for C96H84Cu4F12N4P10S: C, 54.57; H, 3.97; N, 2.64. Found: C, 

54.44; H, 4.08; N, 2.75. Note: The sample submitted for elemental 

analysis was dissolved in THF and then evaporated by vacuum three 

times to remove coordinated acetone molecules. Such a treatment was 

also used to prepare samples of 2 for further reactivity studies 

described below. 

 

Preparation of [(μ2-dcpm)3Cu3(μ3-S)][PF6] (3) 
 

[(μ2-dcpm)2Cu2][PF6]2 (1.00 g, 0.810 mmol) was dissolved 

acetone (30 mL) while stirring with a magnetic stir bar. In a separate 

vessel, Na2S (0.042 g, 0.54 mmol) was stirred in methanol (7.5 mL) 

until completely dissolved. The Na2S solution was then added dropwise 

at room temperature to the [(μ2-dcpm)2Cu2][PF6]2 solution. Once the 

entire solution of Na2S had been added, the resulting deep-amber 

reaction mixture was stirred at room temperature for 3 h. The solution 

was vacuum evaporated to approximately 5 mL and then pipet-filtered 

through Celite to remove NaPF6. The resulting solution was then 

completely evaporated, and recrystallization was conducted using the 
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same vapor diffusion method as that described for complex 2. Yield of 

3: 0.472 g, 55%. 1H NMR (400 MHz, DMSO-d6): δ 1.12–1.40 (m, 60H, 

cyclohexyl), 1.62–1.98 (m, 72H, cyclohexyl). 31P{1H} NMR (500 MHz, 

acetone-d6): δ −6.0 (s, dcpm), −146.8 (sept, J = 707.7 Hz, PF6
–). FT-

IR (cm–1): 2920, 2846, 1444, 834, 754, 556, 513. Anal. Calcd for 

C75H138Cu3F6P7S: C, 56.23; H, 8.73; N, 0.00. Found: C, 56.24; H, 8.47; 

N, 0.00. 

 

Reaction between 2 and NaN3 
 

A solution of 2 (0.013 g, 0.0061 mmol) was prepared in THF (1 

mL). In a separate vessel, NaN3 (0.0039 g, 0.060 mmol) was dissolved 

in MeOH (1 mL). The NaN3 solution was then added dropwise to the 

solution of 2 at room temperature with stirring. No immediate color 

change was observed. The solution appeared cloudy during initial 

drops of NaN3 but was then completely clear once all NaN3 had been 

added. Stirring was continued at room temperature for 16 h, during 

which time the reaction mixture became darker orange. The solution 

was then evaporated to dryness under vacuum, reconstituted in 

CD2Cl2, and then pipet-filtered through Celite to remove NaPF6 and 

unreacted NaN3. The column of Celite in the pipet was washed with a 

small amount of CD2Cl2 to capture as much product as possible. To the 

sample was added a solution of tri-o-tolylphosphine (200 μL of a 0.030 

M solution in CD2Cl2, 0.0060 mmol) as a 31P NMR internal standard. 

Yields based on quantitative 31P NMR: 2′, 51%; 4: 19%; unreacted 2, 

8%. Crystals of 2′ and 4 were obtained by vapor diffusion of diethyl 

ether into a THF solution of the crude mixture in the same manner as 

that for complex 2. 1H NMR (400 MHz, CD2Cl2): δ 1.81 (m, 1.1H, 

coordinated THF), 2.37 (s, 8.8H, o-CH3 in tri-o-tolylphosphine), 3.54 

(s, 0.71H, N–H of 4), 3.64 (s, integral not determined due to peak 

overlap, N–H of 2′), 3.66 (m, integral not determined due to peak 

overlap, coordinated THF), 6.69–7.37 (m, 60H, phenyls). 31P{1H} NMR 

(400 MHz, CD2Cl2): δ 40.3 (s, dppa of 4), 38.6 (s, unknown), 36.7 (s, 

unreacted 2), 35.4 (s, dppa of 2′), −31.83 (s, tri-o-tolylphosphine), 

−146.09 (sept, J = 710.4 Hz, PF6
–). 
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Preparation of [(μ2-dppa)3Cu3(μ3-N3)2][PF6] (4) from 

N3SiMe3 
 

To a solution of 2 (0.090 g, 0.042 mmol) in THF (3 mL) was 

added N3SiMe3 (56 μL, 0.42 mmol). No immediate color change or 

precipitate was observed. Stirring was continued at room temperature 

for 16 h, during which time the reaction color changed to dark red. The 

mixture was evaporated to dryness under vacuum. The red-brown 

residue was then reconstituted in THF (1 mL), and diethyl ether (1 mL) 

was added dropwise until a precipitate began to form. The tan 

precipitate was collected by vacuum filtration, washed with diethyl 

ether (2 × 3 mL), then dissolved in CH2Cl2 (2 mL), and pipet-filtered 

through Celite. The solution was then evaporated to dryness under 

vacuum. Crystals were obtained by vapor diffusion of diethyl ether into 

a THF solution in the same manner that as described for complex 2. 

Yield of 4: 0.0453 g, 68%. 1H NMR (400 MHz, CD2Cl2): δ 3.61 (s, 3H, 

N–H), 7.09–7.33 (m, 63H, phenyls). 31P{1H} NMR (400 MHz, CD2Cl2): 

δ 40.30 (s, dppa), −146.12 (sept, J = 710.3 Hz, PF6
–). FT-IR (cm–1): 

3274 (N–H), 3052, 2920, 2851, 2046 (N3), 1481, 1434, 1303, 1099, 

909, 833, 734, 691, 522, 481. Anal. Calcd for C72H63Cu3F6N9P7: C, 

54.88; H, 4.03; N, 8.00. Found: C, 54.57; H, 4.07; N, 7.80. 

 

Reaction between 2 and NaI 
 

A solution of 2 (0.046 g, 0.0217 mmol) was prepared in THF (2 

mL). In a separate vessel, NaI (0.0325 g, 0.218 mmol) was dissolved 

in MeOH (1 mL). The NaI solution was then added dropwise to the 

solution of 2 at room temperature with stirring. No immediate color 

change or precipitate was observed. The solution continued to stir at 

room temperature for 16 h, during which time the reaction mixture 

became darker orange after 16 h and was completely evaporated by 

vacuum. The solution was then evaporated to dryness under vacuum, 

reconstituted in CD2Cl2, and then pipet-filtered through Celite to 

remove NaPF6 and unreacted NaI. The column of Celite in the pipet 

was washed with a small amount of CD2Cl2 to capture as much product 

as possible. To the sample was added a solution of tri-o-tolylphosphine 

(200 μL of a 0.216 M solution in CD2Cl2, 0.0216 mmol) as a 31P NMR 

internal standard. Yields based on quantitative 31P NMR: 6, 75%; 5, 

13%. Crystals of 5 and 6 were obtained by vapor diffusion of diethyl 
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ether into a THF solution of the crude mixture in the same manner as 

that for complex 2. 1H NMR (400 MHz, CD2Cl2): δ 1.81 (m, 2.1H, 

coordinated THF), 2.37 (s, 8.9H, o-CH3 in tri-o-tolylphosphine), 3.65 

(m, 2.1H, coordinated THF), 3.85 (s, 0.38H, N–H of 5), 3.87 (s, 1.2H, 

N–H of 6), 7.08–7.30 (m, 54.3H, phenyls). 31P{1H} NMR (400 MHz, 

CD2Cl2): δ 33.9 (s, dppa of 5), 29.7 (s, dppa of 6), −31.8 (s, tri-o-

tolylphosphine), −146.1 (sept, J = 710.5 Hz, PF6
–). Spectroscopic 

characterization was verified by toluene precipitation followed by 

washing of the solid with diethyl ether. The combined soluble fractions 

were predominantly 5, while the solid fraction was predominantly 6. 

Characterization of 6. 1H NMR (400 MHz, CD2Cl2): δ 1.81 (m, 2H, 

coordinated THF), 3.56 (s, 3H, N–H), 3.66 (m, 2H, coordinated THF), 

7.08–7.30 (m, 60H, phenyls). 31P{1H} NMR (400 MHz, CD2Cl2): δ 29.6 

(s, dppa), −146.1 (sept, J = 710.3 Hz, PF6
–). FT-IR (cm–1): 3281 (N–

H), 3051, 2921, 2852, 2120, 1481, 1433, 1099, 927, 836, 734, 691, 

523, 481. 
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Figure S1. 1H NMR (500 MHz) of bis(diphenylphosphino)amine ligand in CD3CN synthesized 
from modified literature procedure1. Note: Integration values for solvent impurities were 
neglected from spectrum. 
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Figure S2. 31P NMR (500 MHz) of bis(diphenylphosphino)amine ligand in CD3CN synthesized 
from modified literature procedure1.  
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Figure S3. 1H NMR (500 MHz) of [(μ2-dppa)2Cu2(MeCN)2][PF6]2 in DMSO-d6 synthesized 
from literature procedure2. Calibration of integral for phenyl protons to 40.0 reveals only 2 
acetonitrile molecules maximum coordinated to dicopper complex. Note: Integration values for 
solvent impurities were neglected from spectrum. 

 

Figure S4. 31P NMR (500 MHz) of [(μ2-dppa)2Cu2(MeCN)2][PF6]2 in CD3CN synthesized from 
literature procedure2.  
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Figure S5. 1H NMR (500 MHz) of [(μ2-dcpm)2Cu2][PF6]2 in CD2Cl2 synthesized from literature 
procedure3. Note: Some peaks present in spectrum are solvent impurities. 
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Figure S6. 31P NMR (500 MHz) of [(μ2-dcpm)2Cu2][PF6]2 in CD2Cl2 synthesized from literature 
procedure3.  
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Figure S7. 1H NMR (500 MHz) of 2 in (CD3)2CO. Note: Integration values for solvent 
impurities were neglected from spectrum. Peak at 3.77 ppm was not identified as a solvent 
impurity however it does appear in 1H NMR spectrum of just (CD3)2CO. 

 

Figure S8. 31P NMR (500 MHz) of 2 in (CD3)2CO.  
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Figure S9. Infrared spectrum of 2.  
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Figure S10. Absorption spectrum of 2 (2 x 10-5 M) in MeCN at room temperature. Shoulder 
appears at 284 nm. Note: Shoulder appearing at ~250 nm is from acetonitrile solvent and not a 
characteristic property of 2 (inset is MeCN solvent).  
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Figure S11. Cyclic voltammogram of 2 (1.88 x 10-3 M solution in 0.1 M Bu4NPF6/MeCN). 
Potentials referenced to FeCp2

+/0. The large feature at approximately -0.7 V does not appear in 
the first scan, but only after a complete oxidative scan has been conducted. 

 

 

Table S1. Cyclic voltammetry parameters used for obtaining CV in Figure S11. 

Number 
of 

segmen
ts 

Initial 
Potential 

(V) 

Initial 
Directi

on 

Upper 
Potential 

(V) 

Lower 
Potential 

(V) 

Final 
Potential 

(V) 

Sweep 
Rate 
(V/s) 

5 -1.5 Rising 2 -2 0 0.1 
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Figure S12. Cyclic votammograms with differing scan rates of 2 (1.88 x 10-3 M solution in 0.1 
M Bu4NPF6/MeCN). Potentials referenced to FeCp2

+/0.  

 

Table S2. Cyclic voltammetry parameters used for acquiring CVs in Figure S12.  

Number 
of 

segmen
ts 

Initial 
Potential 

(V) 

Initial 
Directi

on 

Upper 
Potential 

(V) 

Lower 
Potential 

(V) 

Final 
Potential 

(V) 

Sweep 
Rate 
(V/s) 

5 -1 Rising 1 -1 0 0.1, 0.2, 
0.3, 0.4, 

0.5 

-‐0.0635	  V	  

-‐0.1473	  V	  
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Figure S13. Plot of square root of scan rate vs. current in forward direction, demonstrating the 
reversibility of the first oxidation for 2. 

 

Figure S14. 1H NMR (400 MHz) of 3 in DMSO-d6. Note: Solvent impurities are not peak 
picked. 
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Figure S15. 31P NMR (500 MHz) of 3 in (CD3)2CO.  
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Figure S16. Infrared spectrum of 3. The feature at 1705 cm-1 corresponds to trace acetone. 

 

 

Figure S17. Absorption spectrum of 3 (4.0 x 10-5 M) in MeCN at room temperature. Shoulder 
appears at 279 nm, 229 nm and a peak appears at 216 nm. 
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Figure S18. Cyclic voltammogram of 3 (1.88 x 10-3 M solution in 0.1 M Bu4NPF6/MeCN) 
solution. Potentials referenced to FeCp2

+/0. 

 

 

Table S3. Cyclic voltammetry parameters used for obtaining CV in Figure S18. 

Number 
of 

segmen
ts 

Initial 
Potential 

(V) 

Initial 
Directi

on 

Upper 
Potential 

(V) 

Lower 
Potential 

(V) 

Final 
Potential 

(V) 

Sweep 
Rate 
(V/s) 

5 0 Rising 2 -2 0 0.1 
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Figure S19. Cyclic votammograms with differing scan rates of 3 (1.88 x 10-3 M solution in 0.1 
M Bu4NPF6/MeCN). Potentials referenced to FeCp2

+/0. 

 

Table S4. Cyclic voltammetry parameters for acquiring CVs in Figure S19.  

Number 
of 

segmen
ts 

Initial 
Potential 

(V) 

Initial 
Directi

on 

Upper 
Potential 

(V) 

Lower 
Potential 

(V) 

Final 
Potential 

(V) 

Sweep 
Rate 
(V/s) 

5 -0.5 Rising 0.2 -1 -0.9 0.1, 0.2, 
0.3, 0.4, 

0.5 

-‐0.317	  V	  

-‐0.387	  V	  
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Figure S20. Plot of square root of scan rate vs. current in forward direction, demonstrating the 
reversibility of the first oxidation for 3.  

 

 

 

Figure S21. Normalized emission spectra for compounds 1 (blue trace), 2 (green trace) and 3 
(red trace) using 415 nm as the excitation wavelength in all cases. Each plot was normalized 
independently, and the poor signal to noise ratio for 3 results for weak emission below the 
normal detection limit of the instrument. 
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Figure S22. 1H NMR (400 MHz) of reaction mixture of 2 and excess NaN3 in CD2Cl2 with tri(o-
tolyl)phosphine as the internal standard. Peak at 3.62 ppm is unreacted 2. Integration values for 
2, 2’ and coordinated THF molecules at 3.66 ppm could not be determined due to spectral peak 
overlap (see spectra inset).  
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Figure S23. 31P NMR (400 MHz) of reaction mixture of 2 and excess NaN3 in CD2Cl2 with tri(o-
tolyl)phosphine as the internal standard. Anion (PF6

-) at -146.1 ppm is omitted from spectra.  
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Figure S24. 1H NMR (400 MHz) of 4 from N3SiMe3 in CD2Cl2. Note: Integration values for 
solvent impurities were neglected from spectrum. Peak at 2.48 ppm is unknown as a solvent but 
is predicted to be an impurity in NMR tube because of its reoccurrence in other, different 
experimental spectra. 
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Figure S25. 31P NMR (400 MHz) of 4 from N3SiMe3 in CD2Cl2. Anion (PF6
-) at -146.1 ppm 

omitted from spectra. 
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Figure S26. Infrared spectrum of 4.  
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Figure S27. 1H NMR (400 MHz) of reaction mixture of 2 and excess NaI in CD2Cl2 with tri(o-
tolyl)phosphine as the internal standard. Doublet appearing at 3.40 ppm is unknown. 
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Figure S28. 31P NMR (400 MHz) of reaction mixture of 2 and excess NaI in CD2Cl2 with tri(o-
tolyl)phosphine as the internal standard. 
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Figure S29. 1H NMR (400 MHz) of isolated 6 in CD2Cl2. Peak at 2.48 ppm is unknown as a 
solvent impurity but is predicted to be an impurity in NMR tube because of its reoccurrence in 
other, different experimental spectra. 
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Figure S30. 31P NMR (400 MHz) in CD2Cl2 of isolation of 6 by toluene extraction.  

 

Figure S31. Infrared spectrum of 6.  
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Figure S32. Cyclic voltammogram of 0.1 M Bu4NPF6/MeCN electrolyte solution used in CV 
measurements of 2 and 3. Potentials referenced to FeCp2

+/0. Irreversible oxidations occurring at 
0.032 V, 0.33 V, 1.02 V and a irreversible reduction at -1.09 V. 

 

Table S5. Cyclic voltammetry parameters for acquiring CVs in Figure S32. 

Number 
of 

segmen
ts 

Initial 
Potential 

(V) 

Initial 
Directi

on 

Upper 
Potential 

(V) 

Lower 
Potential 

(V) 

Final 
Potential 

(V) 

Sweep 
Rate 
(V/s) 

5 0 Rising 2 -2 0 0.1 
 

Experimental conditions: Competition reaction between NaI/ NaN3 with 2 

A solution of 2 (0.015 g, 0.0071 mmol) in THF (approximately 1 mL) was vacuum evaporated 
extensively to remove any coordinated acetone molecules. Once 2 appeared free of acetone by 
1H NMR, it was dissolved again in 1 mL of THF. In a separate vessel, NaI (0.0053 g, 0.035 
mmol) was dissolved in MeOH (approximately 1 mL). Solution of NaI was then added to NaN3 
(0.0023 g, 0.035 mmol) and then added to 2 dropwise, at room temperature with stirring. 
Solution continued stirring overnight at room temperature and the resulting color was a darker 
orange with no obvious precipitate. Solution was completed evaporated by vacuum.  
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Figure S33: 1H NMR (400 MHz) of products from competition experiment between NaI/NaN3 
and 2 in CD2Cl2. 
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Figure S34: 31P NMR (400 MHz) of products from competition experiment between NaI/NaN3 
and 2 in CD2Cl2. 
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Figure S35. 31P NMR (400 MHz) of Figure S34 (red trace) and Figure S28 (blue trace). Peak at 
24.43 ppm is unknown but is sometimes seen during purification attempts in the reaction 
between 2 and excess NaI as a minor impurity.  
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Experimental conditions: Reaction of 4 with excess NaI 

To a solution of 4 (0.0052 g, 0.0029 mmol) in THF (approximately 1-2 mL), NaI (0.0049 g, 
0.032 mmol) in 1 mL of MeOH was added dropwise with stirring at room temperature. Once all 
the NaI solution was added, a small white precipitate (presumably NaN3) was observed. Solution 
continued stirring overnight at room temperature and the resulting solution appeared to have no 
obvious precipitate. Solution was completed evaporated by vacuum, dissolved in CD2Cl2 and 
was pipette filtered through Celite for NMR sample.  

 

Figure S36. 1H NMR (400 MHz) of resulting mixture of 4 and excess NaI in CD2Cl2. 



	   S34	  

 

Figure S37. 31P NMR (400 MHz) of resulting mixture of 4 and excess NaI in CD2Cl2. Anion 
(PF6

-) at -146.1 ppm omitted from spectra. 
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Figure S38. 31P NMR (400 MHz) comparison of resulting mixture of 4 and excess NaI (red 
trace) and 4 starting material (blue trace, at 40.31 ppm) in CD2Cl2.  
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Experimental conditions: Reaction of 5 and 6 with excess NaN3 

The crude reaction mixture of 5 and 6 (0.054 g, 0.029 mmol based on MW of 6) was dissolved in 
THF (approximately 2 mL) and pipette filtered through Celite. A solution of NaN3 (0.0201 g, 
0.309 mmol) in MeOH (approximately 1 mL) was added dropwise with stirring at room 
temperature. Solution continued stirring overnight at room temperature and the resulting solution 
appeared as the same color, pale yellow and cloudy. Solution was pipette filtered through Celite 
and completely evaporated. 

 

Figure S39. 1H NMR (400 MHz) of resulting mixture of 5 and 6 with excess NaN3 in CD2Cl2. 
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Figure S40. 31P NMR (400 MHz) of resulting mixture of 5 and 6 with excess NaN3 in CD2Cl2. 
Anion (PF6

-) at -146.1 ppm omitted from spectra. 
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Figure S41. 31P NMR (400 MHz) comparison of resulting mixture of 5 and 6 with excess NaN3 
(red trace) and 5 and 6 starting material (blue trace) in CD2Cl2.  
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Figure S42. Fully labeled ORTEP of the dicationic unit in complex 2 (50% probability 
ellipsoids). Solvents, anions, and hydrogen atoms omitted. 
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Figure S43. Crystal packing diagram for 2 (50% probability ellipsoids). 
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Table S6 Crystal data and structure refinement for 2. 

Empirical formula C102H96Cu4F12N4O2P10S 

Formula weight 2233.75 

Temperature/K 99.8(5) 

Crystal system triclinic 

Space group P-1 

a/Å 14.9822(4) 

b/Å 16.5538(5) 

c/Å 21.8707(4) 

α/° 96.934(2) 

β/° 94.5451(18) 

γ/° 112.432(3) 

Volume/Å3 4930.5(2) 

Z 2 

ρcalcmg/mm3 1.505 

m/mm‑1 3.333 

F(000) 2284.0 

Crystal size/mm3 0.1933 × 0.0776 × 0.0241 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection 5.86 to 147.48° 

Index ranges -18 ≤ h ≤ 17, -20 ≤ k ≤ 20, -27 ≤ l ≤ 19 

Reflections collected 46350 

Independent reflections 19350 [Rint = 0.0339, Rsigma = 0.0383] 

Data/restraints/parameters 19350/0/1236 

Goodness-of-fit on F2 1.026 

Final R indexes [I>=2σ (I)] R1 = 0.0404, wR2 = 0.1028 

Final R indexes [all data] R1 = 0.0488, wR2 = 0.1096 

Largest diff. peak/hole / e Å-3 1.02/-0.67 
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Figure S44. Fully labeled ORTEP of the cationic unit in complex 2’ (50% probability 
ellipsoids). The cation is positioned on a crystallographic 3-fold axis of symmetry. The 
solvent/anion region was extremely disordered and was modeled using a solvent-mask procedure 
to account for its contribution to structural factors. 
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Figure S45. Crystal packing diagram for 2’ (50% probability ellipsoids). The spacious channels 
along the 3-fold axis contain solvent/anion electron density modeled using a solvent-mask 
procedure. 
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Table S7 Crystal data and structure refinement for 2’ 

Empirical formula C72H63Cu3N3P6S 

Formula weight 1378.75 

Temperature/K 100.00(10) 

Crystal system trigonal 

Space group P-3 

a/Å 22.6945(7) 

b/Å 22.6945(7) 

c/Å 9.9881(5) 

α/° 90.00 

β/° 90.00 

γ/° 120.00 

Volume/Å3 4455.1(3) 

Z 2 

ρcalcmg/mm3 1.028 

m/mm‑1 2.321 

F(000) 1418.0 

Crystal size/mm3 0.7300 × 0.0498 × 0.0379 

Radiation Cu Kα (λ = 1.5418) 

2Θ range for data collection 7.8 to 147.22° 

Index ranges -27 ≤ h ≤ 28, -27 ≤ k ≤ 28, -10 ≤ l ≤ 11 

Reflections collected 28120 

Independent reflections 5901[R(int) = 0.0556] 

Data/restraints/parameters 5901/270/310 

Goodness-of-fit on F2 1.055 

Final R indexes [I>=2σ (I)] R1 = 0.0773, wR2 = 0.2178 

Final R indexes [all data] R1 = 0.0876, wR2 = 0.2253 

Largest diff. peak/hole / e Å-3 0.75/-0.70 
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Figure S46. Fully labeled ORTEP of the cationic unit in complex 3 (50% probability ellipsoids). 
Solvents, anions, and hydrogen atoms omitted. One of the cyclohexyl groups is disordered in a 
3:1 ratio. 
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Figure S47. Crystal packing diagram for 3 (50% probability ellipsoids). Whereas the PF6
– anion 

and one equivalent of acetone were localized, the structure contains relatively small (261.5 Å3) 
centrosymmetric cavities apparently containing disordered Et2O molecules. However, the 
complex distribution of electron density suggests a presence of some other solvents. Therefore, a 
solvent-mask procedure was applied to account for the contributions of this relatively minor but 
highly disordered and mixed area into the structural factors. 
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Table S8 Crystal data and structure refinement for 3. 

Empirical formula C78H144Cu3F6OP7S 

Formula weight 1651.40 

Temperature/K 100.00(10) 

Crystal system triclinic 

Space group P-1 

a/Å 14.7920(3) 

b/Å 16.0721(4) 

c/Å 18.7434(4) 

α/° 83.8839(17) 

β/° 86.2996(15) 

γ/° 77.4184(17) 

Volume/Å3 4320.34(15) 

Z 2 

ρcalcmg/mm3 1.269 

m/mm‑1 2.728 

F(000) 1764.0 

Crystal size/mm3 0.1891 × 0.1305 × 0.1121 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection 5.66 to 147.42° 

Index ranges -18 ≤ h ≤ 18, -19 ≤ k ≤ 19, -22 ≤ l ≤ 23 

Reflections collected 80468 

Independent reflections 17149 [Rint = 0.0269, Rsigma = 0.0169] 

Data/restraints/parameters 17149/36/916 

Goodness-of-fit on F2 1.056 

Final R indexes [I>=2σ (I)] R1 = 0.0280, wR2 = 0.0734 

Final R indexes [all data] R1 = 0.0302, wR2 = 0.0750 

Largest diff. peak/hole / e Å-3 1.08/-0.54 
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Figure S48. Fully labeled ORTEP of complex 4 (50% probability ellipsoids). There are two 
symmetrically independent formula units in the crystal (only one shown). 
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Figure S49. Crystal packing diagram for 4 (50% probability ellipsoids). There are multiple 
instances of disorder in the structure. 
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Table S9 Crystal data and structure refinement for 4. 

Empirical formula C84H87Cu3F6N9O3P7 

Formula weight 1792.04 

Temperature/K 100.00(10) 

Crystal system triclinic 

Space group P-1 

a/Å 13.1050(2) 

b/Å 22.7156(3) 

c/Å 29.5406(4) 

α/° 79.6448(10) 

β/° 82.6818(13) 

γ/° 75.0872(13) 

Volume/Å3 8328.8(2) 

Z 4 

ρcalcg/cm3 1.429 

µ/mm‑1 2.720 

F(000) 3696.0 

Crystal size/mm3 0.4436 × 0.3995 × 0.1324 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 6.1 to 147.58 

Index ranges -15 ≤ h ≤ 16, -28 ≤ k ≤ 28, -36 ≤ l ≤ 36 

Reflections collected 156426 

Independent reflections 33081 [Rint = 0.0487, Rsigma = 0.0299] 

Data/restraints/parameters 33081/513/2538 

Goodness-of-fit on F2 1.018 

Final R indexes [I>=2σ (I)] R1 = 0.0423, wR2 = 0.1062 

Final R indexes [all data] R1 = 0.0499, wR2 = 0.1131 

Largest diff. peak/hole / e Å-3 0.88/-0.81 
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Figure S50. Fully labeled ORTEP of complex 5 (50% probability ellipsoids). It is disordered in 
a roughly 3:1 ratio with the outside ligand scaffold in place and I and S ligand changing places. 
The alternative positions of I and S practically coincide and only the Cu triangle position shifts 
along I…S axis. 

 

 

 

 



	   S52	  

 

Figure S51. Crystal packing diagram for 5 (50% probability ellipsoids).  

 

 

 

 

  



	   S53	  

Table S10 Crystal data and structure refinement for 5. 

Empirical formula C72H63Cu3IN3P6S 

Formula weight 1505.65 

Temperature/K 100.00(10) 

Crystal system triclinic 

Space group P-1 

a/Å 13.7161(3) 

b/Å 13.9702(4) 

c/Å 20.5980(5) 

α/° 108.460(2) 

β/° 90.8367(19) 

γ/° 118.571(3) 

Volume/Å3 3221.94(14) 

Z 2 

ρcalcmg/mm3 1.552 

m/mm‑1 6.977 

F(000) 1524.0 

Crystal size/mm3 0.5342 × 0.2676 × 0.128 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection 7.42 to 147.54° 

Index ranges -16 ≤ h ≤ 16, -17 ≤ k ≤ 17, -25 ≤ l ≤ 25 

Reflections collected 47311 

Independent reflections 12805 [Rint = 0.0412, Rsigma = 0.0317] 

Data/restraints/parameters 12805/10/816 

Goodness-of-fit on F2 1.083 

Final R indexes [I>=2σ (I)] R1 = 0.0447, wR2 = 0.1148 

Final R indexes [all data] R1 = 0.0476, wR2 = 0.1168 

Largest diff. peak/hole / e Å-3 1.27/-0.69 
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Figure S52. Fully labeled ORTEP of complex 6 (50% probability ellipsoids). Hydrogen atoms 
have been omitted for clarity. 
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Table 11. Crystal data and structure refinement for 6. 
Empirical formula C84 H82 Cu3 F6 I2 N3 O6 P7 S0  

Formula weight 2004.73 g/mol  
Temperature 200(2) K  
Wavelength 0.71073 Å  

Crystal system Triclinic  
Space group P -1  

Unit cell dimensions a = 13.0898(6) Å  
 b = 18.5702(10) Å α = 107.3385(16)° 
 c = 19.7003(10) Å β = 101.4419(15)° 

Volume 4376.0(4) Å3 γ = 98.1390(16)° 
Z 2  

Density (calculated) 1.521 g/cm3  
Absorption coefficient 1.620 mm-1  

F(000) 2014  
Crystal size 0.07 x 0.21 x 0.51 mm3  

Theta range for data 
collection 1.12 to 26.37°  

Index ranges -16<=h<=12, -23<=k<=23, -
24<=l<=24  

Reflections collected 59232  
Independent reflections 17542 [R(int) = 0.0658]  
Completeness to theta = 

26.37° 97.9%  
Absorption correction Multiscan  

Max. and min. transmission 0.8950 and 0.4920  
Refinement method Full-matrix least-squares on F2  

Data / restraints / parameters 17542 / 308 / 1003  
Goodness-of-fit on F2 1.004  

Final R indices [I>2sigma(I)] R1 = 0.0511, wR2 = 0.1359  
R indices (all data) R1 = 0.1045, wR2 = 0.1733  

Largest diff. peak and hole 1.653 and -1.197  
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