We introduce a model for the dynamics of mud cracking in the limit of of
extremely thin layers. In this model the growth of fracture proceeds by
selecting the part of the material with the smallest (quenched) breaking
threshold. In addition, weakening affects the area of the sample neighbour to
the crack. Due to the simplicity of the model, it is possible to derive some
analytical results. In particular, we find that the total time to break down
the sample grows with the dimension L of the lattice as L^2 even though the
percolating cluster has a non trivial fractal dimension. Furthermore, we obtain
a formula for the mean weakening with time of the whole sample.Comment: 5 pages, 4 figures, to be published in Europhysics Letter