
Marquette University
e-Publications@Marquette

Chemistry Faculty Research and Publications Chemistry, Department of

1-1-2015

A Cu4S Model for the Nitrous Oxide Reductase
Active Sites Supported Only by Nitrogen Ligands
Brittany J. Johnson
University of Illinois at Chicago

William E. Antholine
Medical College of Wisconsin

Sergey V. Lindeman
Marquette University, sergey.lindeman@marquette.edu

Neal P. Mankad
University of Illinois at Chicago

Accepted version. Chemical Communications, Vol. 51 (2015): 11860-11863. DOI. © 2015 The Royal
Society of Chemistry. Used with permission.

http://epublications.marquette.edu
http://epublications.marquette.edu/chem_fac
http://epublications.marquette.edu/chemistry
http://dx.doi.org/10.1039/C5CC04675K


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Chemical Communications, Vol 51 (2015): pg. 11860-11863. DOI. This article is © Royal Society of Chemistry and 
permission has been granted for this version to appear in e-Publications@Marquette. Royal Society of Chemistry does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Royal Society of Chemistry. 

1 

 

 

 

A Cu4S Model for the Nitrous Oxide 

Reductase Active Sites Supported 

Only by Nitrogen Ligands 

 
 

 

Brittany J. Johnson 
Department of Chemistry, University of Illinois at Chicago, 

Chicago, IL 

William E. Antholine 
Department of Biophysics, Medical College of Wisconsin, 

Milwaukee, WI 

Sergey V. Lindeman 
Department of Chemistry, Marquette University, 

Milwaukee, WI 

Neal P. Mankad 
Department of Chemistry, University of Illinois at Chicago, 

Chicago, IL 

 

 

 

 

Abstract: To model the (His)7Cu4Sn (n = 1 or 2) active sites of nitrous oxide 

reductase, the first Cu4(μ4-S) cluster supported only by nitrogen donors has 

been prepared using amidinate supporting ligands. Structural, magnetic, 

spectroscopic, and computational characterization is reported. Electrochemical 
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data indicates that the 2-hole model complex can be reduced reversibly to the 

1-hole state and irreversibly to the fully reduced state. 

Nitrous oxide reductase (N2OR) is a copper-dependent enzyme 

that converts environmentally harmful nitrous oxide into benign 

dinitrogen and water during bacterial denitrification.1 Two forms of the 

N2O-reducing active site of N2OR have been characterized 

crystallographically (Figure 1a). Both feature Cu4(μ4-S) cores 

supported by seven histidine N-donors; the CuZ* form features a 

hydroxide/water ligand along one edge of the tetracopper cluster,2,3 

while the CuZ form instead features a second sulphide ligand along 

that edge.4 The CuZ* site has a “1-hole” CuI
3CuII resting state and 

activates N2O rapidly in the “fully reduced” CuI
4 state, while the CuZ 

site has a “2-hole” CuI
2CuII

2 resting state and activates N2O slowly in 

its “1-hole” state.5 The electronic structure descriptions and chemical 

mechanisms related to these active sites remain elusive, motivating 

model studies. 

 
Figure 1. (a) Structures of the CuZ* and CuZ active sites of nitrous oxide reductase; 
(b) a representative Cu3S2 model complex with nitrogen ligands; (c) previously 

reported Cu4(μ4-S) model complexes with phosphorous ligands; (d) the Cu4(μ4-S) 
model complex reported in this work. 
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Much of the available knowledge regarding copper sulphide 

clusters comes from studies of Cu2S2
6 and Cu3S2

7,8 model complexes, 

which feature bridging ligands with significant S-S interactions,9 

supported by nitrogen chelates. The latter category of complexes 

(Figure 1b), in particular, has been the subject of extensive 

experimental and computational characterization as well as fascinating 

literature discussions.9–11 However, none of these complexes truly 

model the unusual μ4-S bridge of N2OR or provide insight into reduced 

catalytic intermediates. Phosphine12,13 ligands have been used to 

stabilize “fully reduced” Cu4(μ4-S) and Cu3(μ3-S) clusters more 

structurally faithful to N2OR (Figure 1c), but the inability thus far of 

these systems to access open-shell oxidation states has precluded 

experimental determination of electron structure using typical methods 

of physical inorganic chemistry.14 In this regard, a recent report of 

strained Cu3(μ3-S) clusters encapsulated within a tris(β-diketinimate) 

cyclophane cage was a noteworthy advance.15 In this communication, 

we report the first Cu4(μ4-S) cluster supported only by nitrogen ligands 

(Figure 1d) and disclose its structural, magnetic, and spectroscopic 

characterization. This system will provide an entry point for electronic 

structure determination and chemical reactivity studies for a 

tetracopper sulphide environment that is, arguably, the most relevant 

model for N2OR identified to date. 

Inspired by a recent study of copper amidinate clusters 

assembled using carbon disulphide,16 we sought to study copper 

sulphide chemistry using the amidinate ligand, [(2,4,6-

Me3C6H2N)2CH]− (abbreviated NCN− here). Addition of the neutral 

sulphur atom donors S8 or Ph3SbS to the dicopper(I) precursor 

(NCN)2Cu2 resulted in a dramatic colour change from colourless to dark 

purple. While this purple product (1) formed in low yields due to its 

instability in solution as well as the formation of several side products, 

we were able to isolate 1 in yields of 34–43%. Elemental analysis data 

for this material was consistent with a (NCN)4Cu4S stoichiometry, and 

this assignment was confirmed by single-crystal X-ray diffraction. 

Complex 1 crystallizes in the P̄43n space group. The crystal symmetry 

coincides with the local symmetry of the NCN− ligand shell, which is 

highly ordered about the crystallographic ̄4 through possible 

stabilization from π-stacking interactions (Figure 2). (This structure is 

apparently rigid in solution as evidenced by NMR spectroscopy, where 

six distinct mesityl methyl resonances were resolved, indicating 
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restricted N-Caryl bond rotation as well as static pseudo-S4 symmetry in 

solution that distinguishes the “upwards” NCN− ligands from the 

“downwards” NCN− ligands. See Figures S5, S6 and S16.) However, 

the crystal symmetry results in two alternative positions for the Cu4S 

core that apparently has lower internal symmetry (Figure S15). 

 
Figure 2. X-ray structure of 1, with only one of two disordered Cu4S components 
shown. Mesityl groups are shown as wireframes, other atoms are shown as 50%-
probability thermal ellipsoids, and hydrogen atoms have been omitted. Colour scheme: 
C, grey; Cu, brown; N, blue; S, yellow. 

The exact assignment of alternative Cu and S positions to one or 

another component of the crystallographic disorder was done by 

analysing Cu-Cu and Cu-S separations from the point of view of 

structurally meaningful values. This assignment was confirmed by DFT 

calculations. Spin-unrestricted and symmetry-unrestricted DFT 

calculations at the BVP86/LANL2TZ(f) level of theory were conducted 

for both singlet and triplet spin states using a model where the N-

mesityl groups were changed to N-methyl groups (1-Me). The singlet 

state for 1-Me was calculated to be lower in energy than the triplet 

state (by 10.2 kcal/mol, although more advanced calculations would 

be needed to accurately estimate the singlet-triplet gap). The 

https://doi.org/10.1039/C5CC04675K
http://epublications.marquette.edu/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731228/#SD1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731228/#SD1
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731228/figure/F2/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Chemical Communications, Vol 51 (2015): pg. 11860-11863. DOI. This article is © Royal Society of Chemistry and 
permission has been granted for this version to appear in e-Publications@Marquette. Royal Society of Chemistry does 
not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission 
from Royal Society of Chemistry. 

5 

 

optimized structure of the singlet state has C2V symmetry and is 

characterized by an alternating short-long-short-long pattern of Cu-Cu 

distances within the Cu4 rectangle, with short Cu-Cu distances of 2.45 

Å and long Cu-Cu distances of 2.79 Å. It is tempting, based on these 

bond distances, to view the 1-Me structure as consisting of two 

separate [Cu1.5Cu1.5] units that are antiferromagnetically coupled to 

each other, giving rise to the singlet ground state. However, the two 

optimized structures were found to have stable wavefunctions with 

respect to internal magnetic coupling, and the α and β molecular 

orbitals for the singlet state were degenerate and identical in nature. 

Collectively, these observations indicate that 1-Me is best described at 

this time as having a closed-shell singlet ground state rather than a 

singlet state arising from magnetic coupling, at this level of theory. 

Only one Cu4S set can be identified from the disordered crystal 

structure of 1 that matches the topology and key structural features of 

optimized singlet 1-Me. The resulting structure (Figure 2) for 1 

possesses near-perfect C2V symmetry and replicates the calculated 

bond length alternation in the Cu4 rectangle of 1-Me, with 

experimentally determined short Cu-Cu distances of 2.4226(6) Å and 

long Cu-Cu distances of 3.0353(6) Å. Within this component, the two 

sets of Cu-S distances are 2.1812(6) Å and 2.1790(6) Å. The 

geometry at sulphur is characterized by a τ4 value17 of 0.76, similar to 

the τ4 values for the μ4-S ligands in CuZ* (0.66) and CuZ (0.71). 

The formal oxidation state assignment for 1 is CuI
2CuII

2, making 

it a model for the “2-hole” state of the N2OR active site. The 2-hole 

CuZ is also a singlet ground state.1 The purple colour of 1 comes from 

two overlapping absorbance peaks (Figure 3): a main peak centred at 

561 nm (ε ≈ 14000 M−1cm−1) and a shoulder at approximately 470 

nm. For comparison, the 2-hole CuZ absorbs at 540 nm and the 1-hole 

CuZ* absorbs at 680 nm.5 To our knowledge, the 2-hole CuZ* has not 

been characterized. 
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Figure 3. Absorbance spectrum of 1 (0.06 mM solution in CH2Cl2). 

The accumulated experimental data is consistent with 1 

possessing a singlet ground state with a low-energy triplet excited 

state. The 1H and 13C{1H} NMR spectra for 1 resemble those for a 

typical diamagnetic species, with chemical shifts occurring in their 

normal regions. However, complex 1 exhibits a measurable magnetic 

moment in solution that increases with increasing temperature (μeff = 

2.3–2.9 μB over the temperature range 221–298 K; see Figure S1). In 

addition, a frozen glass containing 1 was found to be EPR active. The 

observed EPR spectrum seems typical for a monomeric S = 1/2 cupric 

species with splitting from one Cu and two equivalent N centres (g|| = 

2.134, A||(Cu) = 185 G, A||(N) = 15 G; see Figure S18a–b). Notably, 

the intensity of the EPR signal was found to increase by a factor of 2.5 
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as the temperature was increased from 115 K to 130 K. Upon 

decreasing the temperature from 130 K to 112 K, the signal intensity 

decreased, indicating that the temperature dependence is reversible. 

For a typical S = 1/2 signal, the Curie Law predicts that the signal 

intensity should decrease by a factor of 115/130 = 0.88 when warmed 

from 115 K to 130 K, as we confirmed by analysing Cu(acac)2 as an 

authentic S = 1/2 control sample (Figure S18c). The increase in signal 

intensity with increasing temperature could be a further indication that 

a paramagnetic excited state is being thermally populated. While it is 

not clear how the observed EPR signal fits the magnetic properties of 

1, the reversible temperature dependence is unusual. Even if after 

further studies the S = 1/2 turns out to derive from a trace 

paramagnetic byproduct or decomposition material, or even from a 

temperature-dependent comproportionation equilibrium, the magnetic 

properties for the S = 1/2 complex are novel and warrant further 

explanation, which is beyond the scope of this investigation. It is worth 

noting that there is precedent for dicopper sites with EPR spectra 

resembling monomeric cupric species.18–21 

The cyclic voltammetry of 1 was examined in both CH2Cl2, which 

provides access to more oxidizing potentials, and THF, which provides 

access to more reducing potentials. In CH2Cl2 (Figure 4a), the cyclic 

voltammogram (CV) of 1 featured a reversible wave centred at −1.28 

V vs Fc+/Fc (Fc = ferrocene), which is assigned as the 1/[1]− couple, 

as well as two quasi-reversible waves at +0.51 and approximately 

+0.92 V vs Fc+/Fc. These oxidative events are assigned as ligand-

based oxidations for two reasons. First, nearly identical signatures 

were found in the CV of the (NCN)2Cu2 precursor (Figure S11). 

Second, a closely related amidinate-supported dicopper system is 

known to engage in predominantly ligand-based redox chemistry at 

similar potentials.22 In THF (Figure 4b), the 1/[1]− couple was 

observed at −1.25 V vs Fc+/Fc, and an additional irreversible reduction 

to [1]2− was observed with onset at approximately −2.36 V vs Fc+/Fc. 

Collectively, the CV data indicates that (a) oxidation of 1 occurs from 

the NCN− ligands, (b) the formally CuI
3CuII “1-hole” species also is 

stabilized in this system, and (c) further ligand modification is needed 

to stabilize the formally CuI
4 “fully reduced” oxidation state that would 

model the active form of CuZ*. 
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Figure 4. Cyclic voltammograms of 1 with 0.1 M [NBu4][PF6] electrolyte in (a) CH2Cl2 
and (b) THF. 

Lastly, information about the frontier orbitals can be obtained 

from the calculated DFT structure of 1-Me and is largely consistent 

with the collected experimental data. The calculated 1-Me HOMO 

(Figure 5a), which models the source of electrons during oxidation of 

1, is mostly based on two of the NCN− ligands, with MO populations of 

60% total N 2p (15% each), 7% S 3p, and and 16% total Cu 3d (4% 

each). The calculated 1-Me LUMO (Figure 5b), which models the 

destination of electrons during reduction of 1 to the 1-hole and fully 

reduced states, is mostly based on the covalent Cu4(μ4-S) core, with 
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MO populations of 21% S 3p, 48% total Cu 3d (12% each), and 12% 

total N 2p (3% each). 

 
Figure 5. Calculated (a) HOMO and (b) LUMO for 1-Me (0.04 isovalue). 

In conclusion, this report discloses the synthesis and thorough 

characterization of copper sulphide cluster 1, which represents the 

most relevant model for the active sites of N2OR to date from the 

perspective of featuring a Cu4(μ4-S) core supported only by nitrogen 

ligands. While structurally similar to the CuZ* site, model 1 possesses 

redox chemistry reminiscent of the more electron-rich CuZ site, 

presumably due to the presence of anionic amidinate ligands in place 
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of neutral histidine donors. On-going efforts in our laboratory involve 

accessing reduced oxidation states of 1 for more thorough electronic 

structure measurements and chemical reactivity studies. 

Footnotes 

†Start-up funds to N.P.M. were provided by the UIC Department of Chemistry. 

EPR facilities are supported by the National Biomedical EPR Center Grant 

EB001980 from NIH. The authors are grateful to members of the Mankad 

group for verifying reproducibility of the synthetic procedures. 

Electronic Supplementary Information (ESI) available: Experimental and 

computational methods, spectral and crystallographic data, computational 

output. CCDC deposition number for 1: CCDC 1405092. See DOI: 

10.1039/x0xx00000x 
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EXPERIMENTAL 

General Considerations. Unless otherwise specified, all reactions and manipulations 

were performed under purified N2 in a glovebox or using standard Schlenk line techniques. 

Glassware was oven-dried prior to use. Reaction solvents (diethyl ether, toluene, tetrahydrofuran, 

dichloromethane, acetonitrile, pentane) were sparged with argon and dried using a Glass Contour 

Solvent System built by Pure Process Technology, LLC. Chloroform was degassed, dried and 

distilled. Unless otherwise specified, all chemicals were purchased from commercial sources and 

used without further purification.  

Physical Measurements. NMR spectra for compound characterization were recorded at 

ambient temperatures using Bruker Avance DPX-400 or Bruker Avance DRX-500 MHz 

spectrometers. Low temperature NMR spectra were recorded on a Bruker Avance DRX-500 

MHz spectrometer and low temperatures were attained from liquid nitrogen boiloff. Equations 

(1) and (2) were used to calculate magnetic moment (B.M.) and molar susceptibility, 

respectively, using Evans’ Method. 

 𝜇!"" =    8  𝑥  𝑋!  𝑥  𝑇   𝐾        (1) 

 𝑋! = !""  !  ∆ !"
!  !  !"#$%&'("$  !"#$%#&'(   !"   !  !"#$%  !"#!$#%&'%("#

  (2) 

1H and 13C NMR chemical shifts were referenced to residual solvent peaks. FT-IR spectra 

were recorded on solid samples in a glovebox using a Bruker ALPHA spectrometer fitted with a 

diamond-ATR detection unit. Elemental analyses were performed by the Midwest Microlab, 

LLC in Indianapolis, IN. Deuterated solvents were degassed by repeated freeze-pump-thaw 
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cycles and then stored over 3-Å molecular sieves. UV-Vis absorbance spectra were taken at 

room temperature using a Cary 300 Bio UV-Visible Spectrophotometer. 

Electrochemical data was measured at room temperature using a WaveNow USB 

Potentiostat from Pine Research Instrumentation. In a classic three-electrode system, a platinum 

working electrode, platinum counter electrode and a Ag/AgNO3 (0.01 M AgNO3/0.1M Bu4NPF6 

in THF or dichloromethane) reference electrode was used. Compound 1 was dissolved in a 0.1 M 

solution of Bu4NPF6 in THF or dichloromethane at approximately 1 mM concentrations. 

Electrochemical measurements were referenced to approximately 1mM solutions of FeCp2
+/0 in 

same electrolyte solution. 

X-band EPR spectra at 110 K to 150 K were obtained with a Bruker EMX spectrometer 

located at the National Biomedical EPR Center at the Medical College of Wisconsin. Spectra 

were simulated (not shown) with EasySpin1 (Stoll, S.; Schweiger, A.J.; J. Magn. Reson., 2006, 

78,42). Samples of 5 mM 1 were glassed in toluene spiked with 3-5 drops of dichloromethane. 

The full spectrum of 1 shown in the main text utilized microwave frequency 9.297 GHz, temp 

115 K, 9 scans, microwave power 5 mW, mod. Amp. 5G, mod. Freq. 100 kHz, time constant 

81.92 ms, sweep time 83.886 s. The insert focusing on the g|| region utilized microwave 

frequency 9.277 GHz, 25 scans, time constant 81.92 ms, sweep time 42.943 s. 

X-ray crystallography. X-ray crystallography data was collected at the X-ray Structural 

Laboratory at Marquette University (Milwaukee, WI). The X-ray single-crystal diffraction data 

were collected with an Oxford Diffraction SuperNova diffractometer equipped with dual 

microfocus Cu/Mo X-ray sources, X-ray mirror optics, Atlas CCD detector and low-temperature 

                                                
(1) Stoll, S.; Schweiger, A.J. J. Magn. Reson. 2006, 78, 42 
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Cryojet device. Data was collected using Cu(Kα) radiation at 100 K. The data was processed 

with CrysAlisPro program package (Oxford Diffraction Ltd., 2010) typically using a numerical 

Gaussian absorption correction (based on the real shape of the crystal) followed by an empirical 

multi-scan correction using SCALE3 ABSPACK routine. The structures were solved using 

SHELXS program and refined with SHELXL program2 within Olex2 crystallographic package.3 

All computations were performed on an Intel PC computer under Windows 7 OS. The structure 

contained a certain degree of disorder, as described in the main text, which was detected in 

difference Fourier syntheses of electron density and was taken care of using capabilities of 

SHELX package (see Figure S15 and caption for more information). Hydrogen atoms were 

localized in difference syntheses of electron density but were refined using appropriate geometric 

restrictions on the corresponding bond lengths and bond angles within a riding/rotating model 

(torsion angles of Me hydrogens were optimized to better fit the residual electron density). A 

solvent-mask procedure was applied to account for additional electron density that could not be 

assigned definitively to a co-crystallized solvent. 

Preparation of Bis(2,4,6-trimethylphenyl)formamidine. A literature procedure was 

followed for the isolation of bis(2,4,6-trimethylphenyl)formamidine.4 This synthesis took place 

in open air and acetone was used as the recrystallization solvent.  

                                                

(2) Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122. 

(3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. 
Cryst. 2009, 42, 339–341. 

(4) Kolychev, E. L.; Portnyagin, I. A. ; Shuntikov, V. V.; Khrustalev, V. N.; Nechaev, M.S. J. 
Organomet. Chem. 2009, 694, 2454. 
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Preparation of Cu2[(2,4,6-Me3C6H2N)2C(H)]2. A modified version of the reported 

literature procedure for Cu2[(2,6-Me2C6H3N)2C(H)]2
5 was used as follows. Bis(2,4,6-

trimethylphenyl)formamidine (1.83 g, 6.53 mmol) was dissolved in THF (approximately 120 

mL). Sodium bis(trimethylsilyl)amide (1.34 g, 7.31mmol) was added to the stirring THF solution 

at room temperature, and the yellow solution was stirred for 1 h. Tetrakis(acetonitrile)copper(I) 

hexafluorophosphate (2.43 g, 6.52 mmol) was added to the stirring solution, which became 

instantly cloudy white. Stirring was continued at room temperature overnight. The solution 

volume was completely evaporated by vacuum. The evaporated residue was reconstituted in 

dichloromethane and filtered through Celite to remove insoluble NaPF6. The resulting yellow 

filtrate was vacuum evaporated until a precipitate formed. This solid was collected by filtration 

and washed with diethyl ether (2 x 5 mL). The resulting white solid was dried under vacuum, 

and the filtrate was further vacuum evaporated to collect multiple crops. Yield of Cu2[(2,4,6-

Me3C6H2N)2C(H)]2: 93%. 1H NMR (400 MHz, CDCl3): δ 2.21 (s, 12H, p-CH3), 2.30 (s, 24H, o-

CH3), 6.79 (s, 8H, Ar C-H), 6.98 (s, 2H, NCH). 13C{1H} NMR (100 MHz, CDCl3): δ 169.8 

(NC(H)N), 144.4 (quat C, Ar), 133.4 (quat p-C, Ar), 132.8 (quat o-C, Ar), 128.7 (m-CH, Ar), 

20.6 (Ar p-CH3), 19.3 (Ar o-CH3). FT-IR (cm-1): 3002, 2903, 2848, 1611 (N=C), 1567, 1474, 

1429, 1372, 1334, 1231, 1210, 1146, 1007, 846, 624, 583, 513, 418. 

Preparation of [Cu4(µ4-S)(µ2-NCN)4] (1) using S8. Cu2[(2,4,6-Me3C6H2N)2C(H)]2 (0.300 

g, 0.437 mmol) was dissolved in minimum amount of THF (~ 3 mL) using a magnetic stir bar. In 

a separate vessel, S8 (0.007 g, 0.027 mmol) was stirred in 0.5 mL toluene until completely 

dissolved. The toluene solution of S8 was then added to the Cu2[(2,4,6-Me3C6H2N)2C(H)]2 

                                                
(5) Lane, A. C.; Vollmer, M. V.; Laber, C. H.; Melgarejo, D. Y.; Chiarella, G. M.; Fackler Jr., J. 
P.; Yang, X.; Baker, G. A.; Walensky, J. R. Inorg. Chem. 2014, 53, 11357. 
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solution dropwise, with stirring, at room temperature. Once all the S8 solution had been added, 

the color began to change steadily to purple. The solution was stirred vigorously at 40-43° C 

overnight. The next day the solution was black. The solution was completely evaporated by 

vacuum. To the evaporated residue was added a small amount (~ 1 mL) of dichloromethane to 

make a super-saturated solution and was filtered. The dark solid was then washed with 

dichloromethane (2 x 4 mL) to remove unreacted Cu2[(2,4,6-Me3C6H2N)2C(H)]2, then diethyl 

ether (approximately 10 mL) to remove any remaining dichloromethane solvent, and finally 

acetonitrile (approximately 10 mL or until filtrate is clear) to remove a red-colored side product. 

Using a new, clean vacuum flask, the purple solid was extracted with copious amounts of 

dichloromethane until filtrate appeared clear. The purple filtrate was then pipette-filtered through 

Celite, and the solution was then completely evaporated under vacuum – after the filtrate is 

pipette-filtered through Celite, it should be evaporated as soon as possible to avoid 

decomposition into Cu2[(2,4,6-Me3C6H2N)2C(H)]2. Yield of 1: 0.107 g, 34%. Compound 1 was 

stored in a freezer (-36°C) and is not stable in solution at room temperature for long periods of 

time. Note: Trace amounts (5-10%) of the starting material, (Cu2[(2,4,6-Me3C6H2N)2C(H)]2), 

were often detected by 1H NMR regardless of multiple purification attempts. A good method for 

removing Cu2[(2,4,6-Me3C6H2N)2C(H)]2 is by adding a small amount of dichloromethane to the 

solid so that Cu2[(2,4,6-Me3C6H2N)2C(H)]2 dissolves but 1 is super-saturated and doesn’t entirely 

dissolve. This solution is filtered, and the purple solid is washed with a small amount of 

dichloromethane and then diethyl ether to remove dichloromethane solvent. The purple solid can 

then be collected and dried under vacuum. Usually this purification method is done twice to 

achieve analytical purity. Dark black crystals may be obtained by dissolving purple 1 in a 

minimum amount of chloroform and allowing pentane vapors to diffuse in through a pin sized 
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hole. 1H NMR (400 MHz, CDCl3): δ 1.30 (s, 12 H, CH3), 1.38 (s, 12 H, CH3), 2.16 (s, 12 H, 

CH3), 2.18 (s, 12 H, CH3), 2.68 (s, 12 H, CH3), 2.75 (s, 12 H, CH3), 6.12 (s, 2 H, NC(H)N), 6.24 

(s, 4 H, Ar CH), 6.30 (s, 4 H, Ar CH), 6.65 (s, 2 H, NC(H)N), 6.70 (s, 8 H, Ar CH). 13C{1H} 

NMR (100 MHz, CDCl3): δ 172 (NC(H)N), 160 (NC(H)N), 144.5 (Ar), 144.3 (Ar), 133.6 (Ar), 

133.4 (Ar), 132.7 (Ar), 132.58 (Ar), 132.53 (Ar), 128.7 (Ar), 128.5 (Ar), 128.2 (Ar), 128.0 (Ar), 

21 (Ar p-CH3), 20.7 (Ar p-CH3), 20.4 (Ar o-CH3), 18 (Ar o-CH3), 17 (Ar o-CH3). FT-IR (cm-1): 

2981, 2912, 2851, 1610 (N=C), 1553, 1530, 1471, 1372, 1339, 1325, 1224, 1206, 1144, 1029, 

850, 735, 588, 571, 505, 460, 442, 412. Anal. calcd. for C76H92Cu4N8S: C, 65.0; H, 6.61; N, 7.98. 

Found: C, 64.91; H, 6.60; N, 8.06.  

Preparation of [Cu4(µ4-S)(µ2-NCN)4] (1) using Ph3SbS. Cu2[(2,4,6-Me3C6H2N)2C(H)]2 

(0.258 g, 0.376 mmol) was dissolved in minimum amount of THF (~ 3 mL) using a magnetic stir 

bar. In a separate vessel, Ph3SbS (0.0727 g, 0.188 mmol) was dissolved in 2 mL THF. The 

solution of Ph3SbS solution was then added to the Cu2[(2,4,6-Me3C6H2N)2C(H)]2 solution 

dropwise, with stirring, at room temperature. Once all the Ph3SbS solution had been added, the 

color rapidly began to change from yellow to orange then maroon. The solution was stirred 

vigorously at room temperature overnight. The next day the solution was black. The solution was 

completely evaporated by vacuum. To the evaporated residue was added a small amount (~ 1 

mL) of dichloromethane to make a super-saturated solution, which was filtered through Celite. 

The dark solid on the Celite pad was then washed with dichloromethane (2 x 6 mL) to remove 

unreacted Cu2[(2,4,6-Me3C6H2N)2C(H)]2, then diethyl ether (approximately 6 mL) to remove any 

remaining dichloromethane solvent, and finally acetonitrile (approximately 10 mL or until 

filtrate is clear) to remove any remaining triphenyl-antimony containing byproducts (usually 

appearing in 1H NMR at δ 7.24- 7.15 ppm in CDCl3). Using a new, clean vacuum flask, the 
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purple solid remaining on the Celite was collected with copious amounts of dichloromethane 

until the filtrate became clear (~ 100 mL). The dark purple filtrate was completely evaporated by 

vacuum. This filtrate should be evaporated as soon as possible to avoid decomposition into 

Cu2[(2,4,6-Me3C6H2N)2C(H)]2. Yield of 1: 0.1144 g, 43%. Note: Trace amounts (5-10%) of the 

starting material, (Cu2[(2,4,6-Me3C6H2N)2C(H)]2), were often detected by 1H NMR regardless of 

multiple purification attempts. The best method for removing Cu2[(2,4,6-Me3C6H2N)2C(H)]2 is by 

adding a small amount of dichloromethane to the solid so that Cu2[(2,4,6-Me3C6H2N)2C(H)]2 

dissolves but 1 is super-saturated and doesn’t entirely dissolve. This saturated solution is filtered, 

and the purple solid is washed with a small amount of dichloromethane and then diethyl ether to 

remove dichloromethane solvent. The purple solid can then be collected and dried under 

vacuum. Dark black crystals may be obtained by dissolving purple 1 in a minimum amount of 

chloroform and allowing pentane vapors to diffuse in through a pin sized hole.  
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Experimental Conditions: Low temperature NMR Evans’ Method of 1 

Cu4S(NCN)4 (0.0015 g, 0.0010 mmol) was dissolved in CDCl3 and 100 µL of CHCl3 was added. 

Total weight of solution was 1.7571 g. The solution was then pipette-filtered through Celite into 

an NMR tube. A glass capillary tube (approximately 17 cm in length and approximately 3 mm in 

diameter) was syringe filled with CHCl3 and then inserted into the NMR tube containing the 

Cu4S(NCN)4 solution. The difference in chloroform peak chemical shifts were analyzed to 

determine magnetic moment using Evans’ Method.  

Table S1: Data used in calculating magnetic moment and molar susceptibility of 1 for low 
temperature NMR Evans’ Method.  

Temperature (K) Peak 1 (ppm) Peak 2 (ppm) 

298 7.272 7.259 

280 7.274 7.261 

261 7.275 7.262 

240 7.275 7.262 

221 7.274 7.262 
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Figure S1: Change in magnetic moment of 1 depending on temperature studied by 1H NMR 
Evans’ Method analysis.  
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Figure S2: 1H NMR (500 MHz) of 1 at different temperatures for Evans’ Method analysis.  
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Figure S3. 1H NMR (400 MHz) of Cu2[(2,4,6-Me3C6H2N)2C(H)]2 in CDCl3. Peak observed at 
5.31 ppm is residual dichloromethane.  
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Figure S4. 13C{1H} NMR (100 MHz) of Cu2[(2,4,6-Me3C6H2N)2C(H)]2 in CDCl3.  
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Figure S5: 1H NMR (400 MHz) of 1 in CDCl3. Peak observed at 5.30 ppm is residual 
dichloromethane. Peak observed at 2.29 ppm is trace amount of Cu2[(2,4,6-Me3C6H2N)2C(H)]2. 
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Figure S6: 13C NMR (100 MHz) of 1 in CDCl3. Peak observed at the following chemical shifts 
are residual amounts of Cu2[(2,4,6-Me3C6H2N)2C(H)]2; 132.8 ppm, 128.69 ppm, 20.67 ppm and 
19.3 ppm.  
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Figure S7: Absorption Spectra for 0.3 mM Cu2[(2,4,6-Me3C6H2N)2C(H)]2 in dichloromethane. 
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Figure S8: Absorption Spectra for 1 in dichloromethane at different concentrations. Inset plot of 
absorbance vs. concentration (mM); ε = 14000 M-1•cm-1 (y = -0.1712 + 14.746x; R= 0.9100). 
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Figure S9: Cyclic Voltammogram of 0.1 M Bu4NPF6 background in dichloromethane vs 
FeCp2

+/0. 
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Figure S10: Cyclic Voltammogram of 0.1 M Bu4NPF6 background in THF vs. FeCp2
+/0. 
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Figure S11: Cyclic Voltammogram of 1.48 mM Cu2[(2,4,6-Me3C6H2N)2C(H)]2 in 
dichloromethane vs. FeCp2

+/0. 
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Figure S12: Cyclic Voltammogram of 0.63 mM Cu2[(2,4,6-Me3C6H2N)2C(H)]2 in THF vs. 
FeCp2

+/0. 
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Figure S13: Infrared Spectrum of 1. 
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Figure S14: Infrared Spectrum of Cu2[(2,4,6-Me3C6H2N)2C(H)]2. 
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COMPUTATIONAL METHODS 

All calculations were performed using Gaussian09, Revision B.01.6 Density functional theory 
(DFT) calculations were carried out using a hybrid functional, BVP86, consisting of Becke’s 
1988 gradient-corrected Slater exchange functional7 combined with the VWNS local electron 
correlation functional and Perdew’s 1986 nonlocal electron correlation functional.8 Mixed basis 
sets were employed: the LANL2TZ(f) triple-ζ basis set9 with effective core potential10 was used 
for Cu, the Gaussian09 internal 6-311+G(d) basis set was used for S, and the Gaussian09 internal 
6-31+G(d) basis set was used for C, H, and N. The crystal structure of 1 was used as a starting 
point for constructing the input file: the mesityl groups were changed to methyl groups, and only 
one set of Cu4S coordinates were used. All calculations were spin-unrestricted and symmetry-
unrestricted. Final output wavefunctions were tested for stability against antiferromagnetic 
coupling (see: http://www.gaussian.com/g_tech/afc.htm) and were found to be stable. Orbital 
surfaces were analyzed using Gaussview, and orbital populations were determined using the 
Pop=Orbitals keyword in Gaussian09. Optimized coordinates for the singlet state of 1-Me are 
enclosed below. 

 

  

                                                
6 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; 
Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; 
Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; 
Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr., Peralta, J. E.; Ogliaro, F.; 
Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; 
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, 
M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; 
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. 
A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; 
Cioslowski, J.; , Fox, D. J. Gaussian 09, Revision B.01; Gaussian, Inc., Wallingford, CT, 2010. 
7 Becke, A. D. Phys. Rev. A 1988, 38, 3098−100. 
8 Perdew, J. P. Phys. Rev. B 1986, 33, 8822−24 
9 (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. (b) Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory 
Comput. 2008, 4, 1029. (c) Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. 
F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111. 
10 (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 
284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. 



 S25 

Cu1 Cu -1.3232 1.3228 -0.2204 

S2 S 9.01401e-17 -0.0001 -1.472 

Cu7 Cu 1.3231 -1.3227 -0.2202 

Cu12 Cu 1.1189 1.4595 -0.15 

N13 N 0.951 2.6674 1.375 

N14 N -1.4014 2.5711 1.2715 

C15 C -0.2624 2.9922 1.8152 

H16 H -0.3289 3.6517 2.706 

Cu17 Cu -1.1189 -1.4595 -0.1498 

N18 N -0.9509 -2.6671 1.3754 

N19 N 1.4016 -2.5707 1.2719 

C20 C 0.2626 -2.992 1.8156 

H21 H 0.3291 -3.6515 2.7063 

C30 C 2.1006 3.2074 2.094 

H31 H 2.8286 2.4073 2.3177 

H32 H 2.6238 3.98 1.4974 

H33 H 1.7988 3.6724 3.0545 

C34 C -2.654 3.0268 1.8641 

H35 H -3.345 2.1765 2.0013 

H36 H -2.4893 3.5005 2.8533 

H37 H -3.1614 3.7695 1.2166 

C46 C -2.1005 -3.2072 2.0944 

H47 H -1.7986 -3.6726 3.0547 

H48 H -2.8283 -2.407 2.3185 

H49 H -2.624 -3.9794 1.4976 

C50 C 2.6542 -3.0266 1.8644 

H51 H 2.4896 -3.5002 2.8536 

H52 H 3.1615 -3.7693 1.2168 

H53 H 3.3453 -2.1763 2.0014 

N3 N -3.1307 0.9736 -0.9666 

N4 N -2.9782 -1.3951 -0.8587 

C5 C -3.5863 -0.257 -1.1737 
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H6 H -4.5845 -0.3419 -1.6504 

C38 C -3.9049 2.0935 -1.4931 

H39 H -4.8927 1.7673 -1.8774 

H40 H -4.082 2.8517 -0.7085 

H41 H -3.3694 2.5931 -2.3242 

C42 C -3.6538 -2.647 -1.1882 

H43 H -3.8477 -3.2471 -0.2795 

H44 H -4.6269 -2.4703 -1.6895 

H45 H -3.0327 -3.2617 -1.867 

N8 N 3.1306 -0.9739 -0.9666 

N9 N 2.9783 1.3948 -0.8589 

C10 C 3.5862 0.2567 -1.1738 

H11 H 4.5844 0.3415 -1.6506 

C22 C 3.9042 -2.0938 -1.494 

H23 H 4.0794 -2.8534 -0.7103 

H24 H 3.3694 -2.5915 -2.3266 

H25 H 4.893 -1.7681 -1.8762 

C26 C 3.6542 2.6467 -1.1877 

H27 H 4.6266 2.4699 -1.6904 

H28 H 3.0326 3.2625 -1.865 

H29 H 3.8496 3.2457 -0.2786 
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Figure S15. Solid-state structure of 1 determined by X-ray crystallography, with both disordered 
Cu4S components shown. The molecule is positioned on crystallographic element of symmetry (-
4) and experiences two types of disorder: (a) the S cap alternatively occupies 2 symmetrically 
equivalent position over and under the Cu4 moiety, and (b) each of the Cu ions of the central 
moiety deviates alternatively up or down from the mean plane that corresponds to a 
superposition of two tetrahedral distortions of opposite sign. The ligands do not show any 
perceptible disorder. Apparently, they form a significantly robust scaffold around the central 
metal nucleus owing to stacking between their overlapping mesityl groups. 
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Figure S16: 1H-1H COSY (500 MHz) of 1 in CDCl3, showing that none of the signals observed 
by 1H NMR are coupled to one another. Correlation seen at 0.89 ppm is residual pentane solvent.  
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Figure S17: 1H NMR (500 MHz) of 1 in CDCl3 sample used for 1H-1H COSY experiment in 
Figure S16. Peaks observed at the following chemical shifts are residual solvents in sample: 0.88 
ppm (pentane), 1.21 ppm and 3.47 ppm (diethyl ether), 4.93 ppm (dibromomethane), 5.30 ppm 
(dichloromethane).  
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Figure S18. (a) X-band EPR spectrum of 1 in toluene glass at 115 K; (b) the g|| region of the 
EPR spectrum; (c) temperature dependence of EPR signal intensity for 1 and for a Cu(acac)2 
control, with curves drawn to guide the eye. 
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