14 research outputs found

    Temporal variability in the fatty acid composition of suspension-feeders and grazers on a South African rocky shore

    Get PDF
    Numerous ecological studies have used lipids to determine trophic pathways in aquatic systems, as fatty acid profiles provide time-integrated information on an organism’s assimilated diet. Many of these studies have, however, been based on sample collections with a limited temporal scale. The trophic ecology of pelagic systems has been studied intensively using fatty acid analyses, but very little work has been directed toward benthic communities, with the intertidal being especially neglected. The investigation of trophic pathways within rocky shore communities will help us to better understand system responses to environmental changes. The determination of long term temporal variation of the food web within a community could reveal the type, magnitude, duration and frequency of highly seasonal productivity. Changes in fatty acid profiles through time in primary consumers of intertidal rocky shores are poorly understood, but represent an important step towards a more comprehensive understanding of rocky shore food webs, compared with those derived from snapshot or short-term studies. The aim of this thesis was to clarify the temporal variability in the diets of rocky shore intertidal suspension-feeders (the brown mussels Perna perna and the Cape reef worm, Gunnarea gaimardi) and grazers (the Cape sea urchin Parencinus angulosus and the Goat-eye limpet, Cymbulus oculus) on the south east coast of South Africa using fatty acid profiles, and to investigate the effects of life style (e.g. feeding mode) and life cycle on temporal variations in tissue fatty acid profiles. I had three hypotheses: firstly, that suspension-feeders experience high levels of variability in their diets through time because water quality has the potential to change quickly and drastically, whereas grazers experience less variability in their diets over time since their food sources are more constant. Secondly, the reproductive cycles of the suspension-feeder P. perna and the grazer P. angulosus affect the fatty acid composition of their gonads, with temporal variations in lipid composition reflecting changes in reproduction investment. Thirdly, the total amount of energetic reserves available for reproduction are different for each gender (females allocate more energy to egg production than males allocate to gamete production). To address these aims, fatty acid profiles of suspension-feeders and grazers were investigated over a period of twelve months (from July 2010 to June 2011) at a single site on the south east coast of South Africa. The results showed high variability in the fatty acid composition of both the suspension-feeders strongly related with changes in their food source (suspended particulate material). Furthermore, similar temporal changes in fatty acid profiles of the two suspension-feeders were observed over time, reflecting their common diet and life style. There were some inter-specific differences in the suspension-feeders, likely originating from differences in their particle capturing mechanisms. Grazers showed less variability through time compared with the suspension-feeders, with the limpets being more consistent than the sea urchins. The temporal variability in the sea urchin diets may have resulted from the highly diverse and heterogeneous food sources available to them, whereas limpets may be more selective and have a limited range of diet items. Differences between the two grazer species may have arose from differences in their feeding strategies and intertidal zonation. The fatty acid compositions of gonad tissues in both P. perna and P. angulosus showed temporal variability strongly related to reproductive cycle. Differences in the fatty acid values between females and males were apparent, with females richer in total and polyunsaturated fatty acids than males. Spawning and gametogenesis influenced the variability of fatty acids through time in both species, suggesting the importance of considering the reproductive cycle when studying lipids in rocky shore species. Little evidence of lipid transfer between muscles and gonads was seen, suggesting the importance of direct lipid storage into the reproductive tissues. The influence of diet and life history of intertidal consumers on the temporal variability of their fatty acid compositions is important to understand, as it provides us with a better understanding of the functioning of rocky shore systems. There is an enormous potential for future research in this field of study

    Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea

    Get PDF
    The Wadden Sea is a coastal system along the fringe of the land–sea borders of Denmark, Germany and the Netherlands. The Wadden Sea is extremely productive and influenced by strong variations in physical and biological forcing factors that act on timescales of hours to seasons. Productive coastal seas are known to dominate the ocean's methane emission to the atmosphere, but knowledge of controls and temporal variations in methane dynamics in these vastly dynamic systems is scarce. Here we address this knowledge gap by measuring methane inventories and methanotrophic activity at a temporal resolution of 1 h over a period of 2 d, repeatedly during four successive seasons in the central Dutch Wadden Sea. We found that methane dynamics varied between colder and warmer seasons, with generally higher water column methane concentrations and methanotrophic activity in the warmer seasons. The efflux of methane to the atmosphere was, on the other hand, lower in the warmer seasons because of lower wind speeds. On a diel scale, tides controlled methanotrophic activity, which increased ∼40 % at low tide compared to high tide. We estimate that methane oxidizing bacteria reduce the methane budget of the Dutch Wadden Sea by only 2 %, while escapes to the atmosphere and are flushed out into the open North Sea at ebb tide. Our findings indicate that tides play a key role in controlling methane dynamics and methanotrophic activity and highlight the importance of high-resolution and repeated sampling strategies to resolve methane dynamics in fast-changing coastal systems

    Plastic photodegradation under simulated marine conditions

    Get PDF
    Ocean plastic pollution is a problem of increasing magnitude; yet, the amount of plastic at the sea surface is much lower than expected. Solar ultraviolet (UV) radiation can induce photodegradation, but its importance in determining the longevity of floating plastic remains unconstrained. Here, we measured photodegradation rates of different plastic types slightly larger than microplastics (virgin polymers and floating plastic debris) under simulated marine conditions. UV irradiation caused all plastic types to leach dissolved organic carbon, and to a lesser degree carbon dioxide, carbon monoxide, methane, and other hydrocarbon gases. The release of photodegradation products translates to degradation rates of 1.7–2.3 % yr−1 of the tested plastic particles normalized to conditions as found in the subtropical surface ocean. Modelling the accumulation of floating plastic debris, our results show that solar UV radiation could already have degraded 7 to 22 % of all floating plastic that has ever been released to the sea

    A stable isotope assay with 13C-labeled polyethylene to investigate plastic mineralization mediated by Rhodococcus ruber

    Get PDF
    Methods that unambiguously prove microbial plastic degradation and allow for quantification of degradation rates are necessary to constrain the influence of microbial degradation on the marine plastic budget. We developed an assay based on stable isotope tracer techniques to determine microbial plastic mineralization rates in liquid medium on a lab scale. For the experiments, 13C-labeled polyethylene (13C-PE) particles (irradiated with UV-light to mimic exposure of floating plastic to sunlight) were incubated in liquid medium with Rhodococcus ruber as a model organism for proof of principle. The transfer of 13C from 13C-PE into the gaseous and dissolved CO2 pools translated to microbially mediated mineralization rates of up to 1.2 % yr−1 of the added PE. After incubation, we also found highly 13C-enriched membrane fatty acids of R. ruber including compounds involved in cellular stress responses. We demonstrated that isotope tracer techniques are a valuable tool to detect and quantify microbial plastic degradation

    Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea

    Get PDF
    The Wadden Sea is a coastal system along the fringe of the land-sea borders of Denmark, Germany and the Netherlands. The Wadden Sea is extremely productive and influenced by strong variations in physical and biological forcing factors that act on timescales of hours to seasons. Productive coastal seas are known to dominate the ocean's methane emission to the atmosphere, but knowledge of controls and temporal variations in methane dynamics in these vastly dynamic systems is scarce. Here we address this knowledge gap by measuring methane inventories and methanotrophic activity at a temporal resolution of 1h over a period of 2d, repeatedly during four successive seasons in the central Dutch Wadden Sea. We found that methane dynamics varied between colder and warmer seasons, with generally higher water column methane concentrations and methanotrophic activity in the warmer seasons. The efflux of methane to the atmosphere was, on the other hand, lower in the warmer seasons because of lower wind speeds. On a diel scale, tides controlled methanotrophic activity, which increased g1/440% at low tide compared to high tide. We estimate that methane oxidizing bacteria reduce the methane budget of the Dutch Wadden Sea by only 2%, while 1/41/3 escapes to the atmosphere and 1/42/3 are flushed out into the open North Sea at ebb tide. Our findings indicate that tides play a key role in controlling methane dynamics and methanotrophic activity and highlight the importance of high-resolution and repeated sampling strategies to resolve methane dynamics in fast-changing coastal systems

    Plastic photodegradation under simulated marine conditions

    Get PDF
    Ocean plastic pollution is a problem of increasing magnitude; yet, the amount of plastic at the sea surface is much lower than expected. Solar ultraviolet (UV) radiation can induce photodegradation, but its importance in determining the longevity of floating plastic remains unconstrained. Here, we measured photodegradation rates of different plastic types slightly larger than microplastics (virgin polymers and floating plastic debris) under simulated marine conditions. UV irradiation caused all plastic types to leach dissolved organic carbon, and to a lesser degree carbon dioxide, carbon monoxide, methane, and other hydrocarbon gases. The release of photodegradation products translates to degradation rates of 1.7–2.3 % yr−1 of the tested plastic particles normalized to conditions as found in the subtropical surface ocean. Modelling the accumulation of floating plastic debris, our results show that solar UV radiation could already have degraded 7 to 22 % of all floating plastic that has ever been released to the sea

    Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial.

    Get PDF
    BACKGROUND: Child stunting reduces survival and impairs neurodevelopment. We tested the independent and combined effects of improved water, sanitation, and hygiene (WASH), and improved infant and young child feeding (IYCF) on stunting and anaemia in in Zimbabwe. METHODS: We did a cluster-randomised, community-based, 2 × 2 factorial trial in two rural districts in Zimbabwe. Clusters were defined as the catchment area of between one and four village health workers employed by the Zimbabwe Ministry of Health and Child Care. Women were eligible for inclusion if they permanently lived in clusters and were confirmed pregnant. Clusters were randomly assigned (1:1:1:1) to standard of care (52 clusters), IYCF (20 g of a small-quantity lipid-based nutrient supplement per day from age 6 to 18 months plus complementary feeding counselling; 53 clusters), WASH (construction of a ventilated improved pit latrine, provision of two handwashing stations, liquid soap, chlorine, and play space plus hygiene counselling; 53 clusters), or IYCF plus WASH (53 clusters). A constrained randomisation technique was used to achieve balance across the groups for 14 variables related to geography, demography, water access, and community-level sanitation coverage. Masking of participants and fieldworkers was not possible. The primary outcomes were infant length-for-age Z score and haemoglobin concentrations at 18 months of age among children born to mothers who were HIV negative during pregnancy. These outcomes were analysed in the intention-to-treat population. We estimated the effects of the interventions by comparing the two IYCF groups with the two non-IYCF groups and the two WASH groups with the two non-WASH groups, except for outcomes that had an important statistical interaction between the interventions. This trial is registered with ClinicalTrials.gov, number NCT01824940. FINDINGS: Between Nov 22, 2012, and March 27, 2015, 5280 pregnant women were enrolled from 211 clusters. 3686 children born to HIV-negative mothers were assessed at age 18 months (884 in the standard of care group from 52 clusters, 893 in the IYCF group from 53 clusters, 918 in the WASH group from 53 clusters, and 991 in the IYCF plus WASH group from 51 clusters). In the IYCF intervention groups, the mean length-for-age Z score was 0·16 (95% CI 0·08-0·23) higher and the mean haemoglobin concentration was 2·03 g/L (1·28-2·79) higher than those in the non-IYCF intervention groups. The IYCF intervention reduced the number of stunted children from 620 (35%) of 1792 to 514 (27%) of 1879, and the number of children with anaemia from 245 (13·9%) of 1759 to 193 (10·5%) of 1845. The WASH intervention had no effect on either primary outcome. Neither intervention reduced the prevalence of diarrhoea at 12 or 18 months. No trial-related serious adverse events, and only three trial-related adverse events, were reported. INTERPRETATION: Household-level elementary WASH interventions implemented in rural areas in low-income countries are unlikely to reduce stunting or anaemia and might not reduce diarrhoea. Implementation of these WASH interventions in combination with IYCF interventions is unlikely to reduce stunting or anaemia more than implementation of IYCF alone. FUNDING: Bill & Melinda Gates Foundation, UK Department for International Development, Wellcome Trust, Swiss Development Cooperation, UNICEF, and US National Institutes of Health.The SHINE trial is funded by the Bill & Melinda Gates Foundation (OPP1021542 and OPP113707); UK Department for International Development; Wellcome Trust, UK (093768/Z/10/Z, 108065/Z/15/Z and 203905/Z/16/Z); Swiss Agency for Development and Cooperation; US National Institutes of Health (2R01HD060338-06); and UNICEF (PCA-2017-0002)

    Diel and seasonal methane dynamics in the shallow and turbulent Wadden Sea

    Get PDF
    16 pages, 8 figures, 2 tables, supplement https://doi.org/10.5194/bg-20-3857-2023-supplement.-- Data availability: All data will be archived and made publicly available in the database DAS (Data Archive System, https://doi.org/10.25850/nioz/7b.b.pf, de Groot, 2023)The Wadden Sea is a coastal system along the fringe of the land–sea borders of Denmark, Germany and the Netherlands. The Wadden Sea is extremely productive and influenced by strong variations in physical and biological forcing factors that act on timescales of hours to seasons. Productive coastal seas are known to dominate the ocean's methane emission to the atmosphere, but knowledge of controls and temporal variations in methane dynamics in these vastly dynamic systems is scarce. Here we address this knowledge gap by measuring methane inventories and methanotrophic activity at a temporal resolution of 1 h over a period of 2 d, repeatedly during four successive seasons in the central Dutch Wadden Sea. We found that methane dynamics varied between colder and warmer seasons, with generally higher water column methane concentrations and methanotrophic activity in the warmer seasons. The efflux of methane to the atmosphere was, on the other hand, lower in the warmer seasons because of lower wind speeds. On a diel scale, tides controlled methanotrophic activity, which increased ∼40 % at low tide compared to high tide. We estimate that methane oxidizing bacteria reduce the methane budget of the Dutch Wadden Sea by only 2 %, while 1/3 escapes to the atmosphere and 2/3 are flushed out into the open North Sea at ebb tide. Our findings indicate that tides play a key role in controlling methane dynamics and methanotrophic activity and highlight the importance of high-resolution and repeated sampling strategies to resolve methane dynamics in fast-changing coastal systemsWith the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Dual HLA B*42 and B*81-reactive T cell receptors recognize more diverse HIV-1 Gag escape variants

    Get PDF
    Closely related HLA alleles presenting similar HIV-1 epitopes can be associated with variable clinical outcome. Here the authors report their findings on CD8+ T cell responses to the HIV-1 Gag-p24 TL9 immunodominant epitope in the context of closely related protective and less protective HLA alleles, and their differential effect on viral contro

    Plastic photodegradation under simulated marine conditions

    Get PDF
    Ocean plastic pollution is a problem of increasing magnitude; yet, the amount of plastic at the sea surface is much lower than expected. Solar ultraviolet (UV) radiation can induce photodegradation, but its importance in determining the longevity of floating plastic remains unconstrained. Here, we measured photodegradation rates of different plastic types slightly larger than microplastics (virgin polymers and floating plastic debris) under simulated marine conditions. UV irradiation caused all plastic types to leach dissolved organic carbon, and to a lesser degree carbon dioxide, carbon monoxide, methane, and other hydrocarbon gases. The release of photodegradation products translates to degradation rates of 1.7–2.3 % yr−1 of the tested plastic particles normalized to conditions as found in the subtropical surface ocean. Modelling the accumulation of floating plastic debris, our results show that solar UV radiation could already have degraded 7 to 22 % of all floating plastic that has ever been released to the sea.</p
    corecore