125 research outputs found
Resource Allocation for Epidemic Control in Metapopulations
Deployment of limited resources is an issue of major importance for decision-making in crisis events. This is especially true for large-scale outbreaks of infectious diseases. Little is known when it comes to identifying the most efficient way of deploying scarce resources for control when disease outbreaks occur in different but interconnected regions. The policy maker is frequently faced with the challenge of optimizing efficiency (e.g. minimizing the burden of infection) while accounting for social equity (e.g. equal opportunity for infected individuals to access treatment). For a large range of diseases described by a simple SIRS model, we consider strategies that should be used to minimize the discounted number of infected individuals during the course of an epidemic. We show that when faced with the dilemma of choosing between socially equitable and purely efficient strategies, the choice of the control strategy should be informed by key measurable epidemiological factors such as the basic reproductive number and the efficiency of the treatment measure. Our model provides new insights for policy makers in the optimal deployment of limited resources for control in the event of epidemic outbreaks at the landscape scale
Using community-level prevalence of Loa loa infection to predict the proportion of highly-infected individuals:statistical modelling to support Lymphatic Filariasis and Onchocerciasis elimination programs
Lymphatic Filariasis and Onchocerciasis (river blindness) constitute pressing public health issues in tropical regions. Global elimination programs, involving mass drug administration (MDA), have been launched by the World Health Organisation. Although the drugs used are generally well tolerated, individuals who are highly co-infected with Loa loa are at risk of experiencing serious adverse events. Highly infected individuals are more likely to be found in communities with high prevalence. An understanding of the relationship between individual infection and population-level prevalence can therefore inform decisions on whether MDA can be safely administered in an endemic community. Based on Loa loa infection intensity data from individuals in Cameroon, the Republic of the Congo and the Democratic Republic of the Congo we develop a statistical model for the distribution of infection levels in communities. We then use this model to make predictive inferences regarding the proportion of individuals whose parasite count exceeds policy-relevant levels. In particular we show how to exploit the positive correlation between community-level prevalence and intensity of infection in order to predict the proportion of highly infected individuals in a community given only prevalence data from the community in question. The resulting prediction intervals are not substantially wider, and in some cases narrower, than the corresponding binomial confidence intervals obtained from data that include measurements of individual infection levels. Therefore the model developed here facilitates the estimation of the proportion of individuals highly infected with Loa loa using only estimated community level prevalence. It can be used to assess the risk of rolling out MDA in a specific community, or to guide policy decisions
Economically optimal timing for crop disease control under uncertainty: an options approach
Severe large-scale disease and pest infestations in agricultural regions can cause significant economic damage. Understanding if and when disease control measures should be taken in the presence of risk and uncertainty is a key issue. We develop a framework to examine the economically optimal timing of treatment. The decision to treat should only be undertaken when the benefits exceed the costs by a certain amount and not if they are merely equal to or greater than the costs as standard net-present-value (NPV) analysis suggests. This criterion leads to a reduction in fungicide use. We investigate the effect of the model for disease progress on the value required for immediate treatment by comparing two standard models for disease increase (exponential and logistic growth). Analyses show that the threshold value of benefits required for immediate release of treatment varies significantly with the relative duration of the agricultural season, the intrinsic rate of increase of the disease and the level of uncertainty in disease progression. In comparing the performance of the delay strategy introduced here with the conventional NPV approach, we show how the degree of uncertainty affects the benefits of delaying control
Recommended from our members
The Impact of Imitation on Vaccination Behavior in Social Contact Networks
Previous game-theoretic studies of vaccination behavior typically have often assumed that populations are homogeneously mixed and that individuals are fully rational. In reality, there is heterogeneity in the number of contacts per individual, and individuals tend to imitate others who appear to have adopted successful strategies. Here, we use network-based mathematical models to study the effects of both imitation behavior and contact heterogeneity on vaccination coverage and disease dynamics. We integrate contact network epidemiological models with a framework for decision-making, within which individuals make their decisions either based purely on payoff maximization or by imitating the vaccination behavior of a social contact. Simulations suggest that when the cost of vaccination is high imitation behavior may decrease vaccination coverage. However, when the cost of vaccination is small relative to that of infection, imitation behavior increases vaccination coverage, but, surprisingly, also increases the magnitude of epidemics through the clustering of nonvaccinators within the network. Thus, imitation behavior may impede the eradication of infectious diseases. Calculations that ignore behavioral clustering caused by imitation may significantly underestimate the levels of vaccination coverage required to attain herd immunity
Retrospective Analysis of the 2014-2015 Ebola Epidemic in Liberia.
The 2014-2015 Ebola epidemic has been the most protracted and devastating in the history of the disease. To prevent future outbreaks on this scale, it is imperative to understand the reasons that led to eventual disease control. Here, we evaluated the shifts of Ebola dynamics at national and local scales during the epidemic in Liberia. We used a transmission model calibrated to epidemiological data between June 9 and December 31, 2014, to estimate the extent of community and hospital transmission. We found that despite varied local epidemic patterns, community transmission was reduced by 40-80% in all the counties analyzed. Our model suggests that the tapering of the epidemic was achieved through reductions in community transmission, rather than accumulation of immune individuals through asymptomatic infection and unreported cases. Although the times at which this transmission reduction occurred in the majority of the Liberian counties started before any large expansion in hospital capacity and the distribution of home protection kits, it remains difficult to associate the presence of interventions with reductions in Ebola incidence
Harnessing case isolation and ring vaccination to control Ebola.
As a devastating Ebola outbreak in West Africa continues, non-pharmaceutical control measures including contact tracing, quarantine, and case isolation are being implemented. In addition, public health agencies are scaling up efforts to test and deploy candidate vaccines. Given the experimental nature and limited initial supplies of vaccines, a mass vaccination campaign might not be feasible. However, ring vaccination of likely case contacts could provide an effective alternative in distributing the vaccine. To evaluate ring vaccination as a strategy for eliminating Ebola, we developed a pair approximation model of Ebola transmission, parameterized by confirmed incidence data from June 2014 to January 2015 in Liberia and Sierra Leone. Our results suggest that if a combined intervention of case isolation and ring vaccination had been initiated in the early fall of 2014, up to an additional 126 cases in Liberia and 560 cases in Sierra Leone could have been averted beyond case isolation alone. The marginal benefit of ring vaccination is predicted to be greatest in settings where there are more contacts per individual, greater clustering among individuals, when contact tracing has low efficacy or vaccination confers post-exposure protection. In such settings, ring vaccination can avert up to an additional 8% of Ebola cases. Accordingly, ring vaccination is predicted to offer a moderately beneficial supplement to ongoing non-pharmaceutical Ebola control efforts
Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC)
Since the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical models calibrated with these data can help to fill remaining gaps in our understanding of HAT transmission dynamics, including key operational research questions such as whether integrating vector control with current intervention strategies is needed to achieve HAT elimination. Here we explore, via an ensemble of models and simulation studies, how including or not disease stage data, or using more updated data sets affect model predictions of future control strategies
Balancing Detection and Eradication for Control of Epidemics: Sudden Oak Death in Mixed-Species Stands
Culling of infected individuals is a widely used measure for the control of several plant and animal pathogens but culling first requires detection of often cryptically-infected hosts. In this paper, we address the problem of how to allocate resources between detection and culling when the budget for disease management is limited. The results are generic but we motivate the problem for the control of a botanical epidemic in a natural ecosystem: sudden oak death in mixed evergreen forests in coastal California, in which species composition is generally dominated by a spreader species (bay laurel) and a second host species (coast live oak) that is an epidemiological dead-end in that it does not transmit infection but which is frequently a target for preservation. Using a combination of an epidemiological model for two host species with a common pathogen together with optimal control theory we address the problem of how to balance the allocation of resources for detection and epidemic control in order to preserve both host species in the ecosystem. Contrary to simple expectations our results show that an intermediate level of detection is optimal. Low levels of detection, characteristic of low effort expended on searching and detection of diseased trees, and high detection levels, exemplified by the deployment of large amounts of resources to identify diseased trees, fail to bring the epidemic under control. Importantly, we show that a slight change in the balance between the resources allocated to detection and those allocated to control may lead to drastic inefficiencies in control strategies. The results hold when quarantine is introduced to reduce the ingress of infected material into the region of interest
Recommended from our members
A Cost-Effectiveness Tool for Informing Policies on Zika Virus Control
Background:
As Zika virus continues to spread, decisions regarding resource allocations to control the outbreak underscore the need for a tool to weigh policies according to their cost and the health burden they could avert. For example, to combat the current Zika outbreak the US President requested the allocation of 91,102 and $28,818, respectively. We demonstrated the utility of our cost-effectiveness tool with examples evaluating funding commitments by Costa Rica and Brazil, the US presidential proposal, and the novel approach of genetically modified mosquitoes. Our analyses indicate that the commitments and the proposal are likely to be cost-effective, whereas the cost-effectiveness of genetically modified mosquitoes depends on the country of implementation.
Conclusions/Significance:
Current estimates from our tool suggest that the health burden from microcephaly and GBS warrants substantial expenditures focused on Zika virus control. Our results justify the funding committed in Costa Rica and Brazil and many aspects of the budget outlined in the US president’s proposal. As data continue to be collected, new parameter estimates can be customized in real-time within our user-friendly tool to provide updated estimates on cost-effectiveness of interventions and inform policy decisions in country-specific settings
- …