160 research outputs found

    Kpc-scale Properties of Emission-line Galaxies

    Get PDF
    We perform a detailed study of the resolved properties of emission-line galaxies at kpc-scale to investigate how small-scale and global properties of galaxies are related. 119 galaxies with high-resolution Keck/DEIMOS spectra are selected to cover a wide range in morphologies over the redshift range 0.2<z<1.3. Using the HST/ACS and HST/WFC3 imaging data taken as a part of the CANDELS project, for each galaxy we perform SED fitting per resolution element, producing resolved rest-frame U-V color, stellar mass, star formation rate, age and extinction maps. We develop a technique to identify blue and red "regions" within individual galaxies, using their rest-frame color maps. As expected, for any given galaxy, the red regions are found to have higher stellar mass surface densities and older ages compared to the blue regions. Furthermore, we quantify the spatial distribution of red and blue regions with respect to both redshift and stellar mass, finding that the stronger concentration of red regions toward the centers of galaxies is not a significant function of either redshift or stellar mass. We find that the "main sequence" of star forming galaxies exists among both red and blue regions inside galaxies, with the median of blue regions forming a tighter relation with a slope of 1.1+/-0.1 and a scatter of ~0.2 dex compared to red regions with a slope of 1.3+/-0.1 and a scatter of ~0.6 dex. The blue regions show higher specific Star Formation Rates (sSFR) than their red counterparts with the sSFR decreasing since z~1, driver primarily by the stellar mass surface densities rather than the SFRs at a giver resolution element.Comment: 17 pages, 17 figures, Submitted to the Ap

    Modelling high resolution ALMA observations of strongly lensed highly star forming galaxies detected by <i>Herschel</i>

    Get PDF
    We have modelled ∼ 0.1 arcsec resolution ALMA imaging of six strong gravitationally lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers mass properties of the lensing galaxies and, by determining magnification factors, intrinsic properties of the lensed sub-millimetre sources. We find that the lensed galaxies all have high ratios of star formation rate to dust mass, consistent with or higher than the mean ratio for high redshift sub-millimetre galaxies and low redshift ultra-luminous infra-red galaxies. Source reconstruction reveals that most galaxies exhibit disturbed morphologies. Both the cleaned image plane data and the directly observed interferometric visibilities have been modelled, enabling comparison of both approaches. In the majority of cases, the recovered lens models are consistent between methods, all six having mass density profiles that are close to isothermal. However, one system with poor signal to noise shows mildly significant differences

    Spitzer Observations of the North Ecliptic Pole

    Get PDF
    We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at R.A.=18h00m00s\rm R.A.=18^h00^m00^s, Decl.=66d33m38s.552\rm Decl.=66^d33^m38^s.552). The observations are conducted with IRAC in 3.6 μ\mum and 4.5 μ\mum bands over an area of 7.04 deg2^2 reaching 1σ\sigma depths of 1.29 μ\muJy and 0.79 μ\muJy in the 3.6 μ\mum and 4.5 μ\mum bands respectively. The photometric catalog contains 380,858 sources with 3.6 μ\mum and 4.5 μ\mum band photometry over the full-depth NEP mosaic. Point source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be utilized in constraining the physical properties of extra-galactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extra-galactic infrared background light.Comment: 10 pages, 11 figures and 3 tables. Accepted to the ApJ

    The DEIMOS 10k spectroscopic survey catalog of the COSMOS field

    Get PDF
    We present a catalog of 10718 objects in the COSMOS field observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ~5500-9800A. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I_AB~23 and K_AB~21, with a secondary peak at K_AB~24. We sample a broad redshift distribution in the range 0<z<6, with one peak at z~1, and another one around z~4. We have identified 13 redshift spikes at z>0.65 with chance probabilities <4xE-4$, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Ly-alpha background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4.Comment: 28 pages, 11 figures and 5 tables. The full catalogue table is available on http://cosmos.astro.caltech.edu. Accepted for publication in the Astrophysical Journa

    Beyond Spheroids and Discs: Classifications of CANDELS Galaxy Structure at 1.4 < z < 2 via Principal Component Analysis

    Get PDF
    Important but rare and subtle processes driving galaxy morphology and star-formation may be missed by traditional spiral, elliptical, irregular or S\'ersic bulge/disk classifications. To overcome this limitation, we use a principal component analysis of non-parametric morphological indicators (concentration, asymmetry, Gini coefficient, M20M_{20}, multi-mode, intensity and deviation) measured at rest-frame BB-band (corresponding to HST/WFC3 F125W at 1.4 1010M⊙10^{10} M_{\odot}) galaxy morphologies. Principal component analysis (PCA) quantifies the correlations between these morphological indicators and determines the relative importance of each. The first three principal components (PCs) capture ∼\sim75 per cent of the variance inherent to our sample. We interpret the first principal component (PC) as bulge strength, the second PC as dominated by concentration and the third PC as dominated by asymmetry. Both PC1 and PC2 correlate with the visual appearance of a central bulge and predict galaxy quiescence. PC1 is a better predictor of quenching than stellar mass, as as good as other structural indicators (S\'ersic-n or compactness). We divide the PCA results into groups using an agglomerative hierarchical clustering method. Unlike S\'ersic, this classification scheme separates compact galaxies from larger, smooth proto-elliptical systems, and star-forming disk-dominated clumpy galaxies from star-forming bulge-dominated asymmetric galaxies. Distinguishing between these galaxy structural types in a quantitative manner is an important step towards understanding the connections between morphology, galaxy assembly and star-formation.Comment: 31 pages, 24 figures, accepted for publication in MNRA

    CANDELS Sheds Light on the Environmental Quenching of Low-mass Galaxies

    Get PDF
    We investigate the environmental quenching of galaxies, especially those with stellar masses (M*)<109.5M⊙<10^{9.5} M_\odot, beyond the local universe. Essentially all local low-mass quenched galaxies (QGs) are believed to live close to massive central galaxies, which is a demonstration of environmental quenching. We use CANDELS data to test {\it whether or not} such a dwarf QG--massive central galaxy connection exists beyond the local universe. To this purpose, we only need a statistically representative, rather than a complete, sample of low-mass galaxies, which enables our study to z≳1.5z\gtrsim1.5. For each low-mass galaxy, we measure the projected distance (dprojd_{proj}) to its nearest massive neighbor (M*>1010.5M⊙>10^{10.5} M_\odot) within a redshift range. At a given redshift and M*, the environmental quenching effect is considered to be observed if the dprojd_{proj} distribution of QGs (dprojQd_{proj}^Q) is significantly skewed toward lower values than that of star-forming galaxies (dprojSFd_{proj}^{SF}). For galaxies with 108M⊙<M∗<1010M⊙10^{8} M_\odot < M* < 10^{10} M_\odot, such a difference between dprojQd_{proj}^Q and dprojSFd_{proj}^{SF} is detected up to z∼1z\sim1. Also, about 10\% of the quenched galaxies in our sample are located between two and four virial radii (RVirR_{Vir}) of the massive halos. The median projected distance from low-mass QGs to their massive neighbors, dprojQ/RVird_{proj}^Q / R_{Vir}, decreases with satellite M* at M∗≲109.5M⊙M* \lesssim 10^{9.5} M_\odot, but increases with satellite M* at M∗≳109.5M⊙M* \gtrsim 10^{9.5} M_\odot. This trend suggests a smooth, if any, transition of the quenching timescale around M∗∼109.5M⊙M* \sim 10^{9.5} M_\odot at 0.5<z<1.00.5<z<1.0.Comment: 8 pages, 5 figures. ApJL accepted. Typos correcte

    ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    Get PDF
    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ∼1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro–Frenk–White profile. We show that we would need a sample of ∼500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys
    • …
    corecore