8 research outputs found

    Association of low-penetrance alleles with male breast cancer risk and clinicopathological characteristics: results from a multicenter study in Italy

    Get PDF
    It is well-known that male breast cancer (MBC) susceptibility is mainly due to high-penetrance BRCA1/2 mutations. Here, we investigated whether common low-penetrance breast cancer (BC) susceptibility alleles may influence MBC risk in Italian population and whether variant alleles may be associated with specific clinicopathological features of MBCs. In the frame of the Italian Multicenter Study on MBC, we genotyped 413 MBCs and 745 age-matched male controls at 9 SNPs annotating known BC susceptibility loci. By multivariate logistic regression models, we found a significant increased MBC risk for 3 SNPs, in particular, with codominant models, for rs2046210/ESR1 (OR = 1.71; 95 % CI: 1.43-2.05; p = 0.0001), rs3803662/TOX3 (OR = 1.59; 95 % CI: 1.32-1.92; p = 0.0001), and rs2981582/FGFR2 (OR = 1.26; 95 % CI: 1.05-1.50; p = 0.013). Furthermore, we showed that the prevalence of the risk genotypes of ESR1 tended to be higher in ER- tumors (p = 0.062). In a case-case multivariate analysis, a statistically significant association between ESR1 and ER- tumors was found (OR = 1.88; 95 % CI: 1.03-3.49; p = 0.039). Overall, our data, based on a large and well-characterized MBC series, support the hypothesis that common low-penetrance BC susceptibility alleles play a role in MBC susceptibility and, interestingly, indicate that ESR1 is associated with a distinct tumor subtype defined by ER-negative status

    Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores

    Get PDF
    PurposeBRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigatedfor the first time to our knowledgeassociations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/2 mutations and implications for cancer risk prediction.Materials and MethodsWe genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights.ResultsIn male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 x 10(-6)). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 x 10(-9)). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively.ConclusionPRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.Peer reviewe

    Novel and known genetic variants for male breast cancer risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: Results from a multicenter study in Italy

    Get PDF
    Increasing evidence indicates that common genetic variants may contribute to the heritable risk of breast cancer (BC). In this study, we investigated whether single nucleotide polymorphisms (SNPs), within the 8q24.21 multi-cancer susceptibility region and within BC-associated loci widespread in the genome, may influence the risk of BC in men, and whether they may be associated with specific clinical-pathologic characteristics of male BC (MBC). In the frame of the ongoing Italian Multicenter Study on MBC, we performed a case-control study on 386 MBC cases, including 50 BRCA1/2 mutation carriers, and 1105 healthy male controls, including 197 unaffected BRCA1/2 mutation carriers. All 1491 subjects were genotyped by Sequenom iPLEX technology for a total of 29 susceptibility SNPs. By logistic regression models, we found a significant association with MBC risk for five SNPs: rs1562430 (p=0.002) and rs445114 (p=0.026) both within the 8q24.21 region; rs1011970/9p21.3 (p=0.011), rs614367/11q13.3 (p=0.016) and rs1314913/14q24.1 (p<0.0001). Differences in the distribution of rs614367/11q13.3 genotypes according to oestrogen receptor (ER) status (p=0.006), and of rs1011970/9p21.3 genotypes according to human epidermal growth factor receptor 2 (HER2) status (p=0.002) emerged. Association of rs1011970/9p21.3 risk genotype with HER2+MBC was confirmed by a multivariate analysis. rs1314913/14q24.1 was associated with increased MBC risk in analyses restricted to male BRCA1/2 mutation carriers (p=0.041). In conclusion, we provided the first evidence that the 8q24.21 region is associated with MBC risk. Furthermore, we showed that the SNPs rs1562430/8q24.21 and rs1314913/14q24.1 strongly influence BC risk in men and suggested that the SNP rs1314913/14q24.1 may act as a risk modifier locus in male BRCA1/2 mutation carriers

    Prediction of breast and prostate cancer risks in male BRCA1 and BRCA2 mutation carriers using polygenic risk scores

    Get PDF

    Intracellular calcium channels and their modulators

    No full text

    Biochemical Effects of Drugs Acting on the Central Nervous System

    No full text
    corecore