11 research outputs found

    Zeeman effect in atmospheric O₂ measured by ground-based microwave radiometry

    Get PDF
    In this work we study the Zeeman effect on stratospheric O₂ using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O₂ energy states, which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz. Both a fixed and a rotating mirror were incorporated into the TEMPERA (TEMPERature RAdiometer) in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. Moreover, a high-resolution spectrometer (1 kHz) was used in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements. The measured spectra showed a clear polarized signature when the observational angles were changed, evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The results suggest some interesting new aspects for research of the upper atmosphere

    Hygroscopic growth of atmospheric aerosol particles based on active remote sensing and radiosounding measurements: selected cases in southeastern Spain

    Get PDF
    A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60–90 and 40–83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the γ exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity

    A new methodology for PBL height estimations based on lidar depolarization measurements: analysis and comparison against MWR and WRF model-based results

    Get PDF
    The automatic and non-supervised detection of the planetary boundary layer height (zPBL) by means of lidar measurements was widely investigated during the last several years. Despite considerable advances, the experimental detection still presents difficulties such as advected aerosol layers coupled to the planetary boundary layer (PBL) which usually produces an overestimation of the zPBL. To improve the detection of the zPBL in these complex atmospheric situations, we present a new algorithm, called POLARIS (PBL height estimation based on lidar depolarisation). POLARIS applies the wavelet covariance transform (WCT) to the range-corrected signal (RCS) and to the perpendicular-to-parallel signal ratio (δ) profiles. Different candidates for zPBL are chosen and the selection is done based on the WCT applied to the RCS and δ. We use two ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaigns with lidar and microwave radiometer (MWR) measurements, conducted in 2012 and 2013, for the POLARIS' adjustment and validation. POLARIS improves the zPBL detection compared to previous methods based on lidar measurements, especially when an aerosol layer is coupled to the PBL. We also compare the zPBL provided by the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model with respect to the zPBL determined with POLARIS and the MWR under Saharan dust events. WRF underestimates the zPBL during daytime but agrees with the MWR during night-time. The zPBL provided by WRF shows a better temporal evolution compared to the MWR during daytime than during night-time

    A comparative study of aerosol microphysical properties retrieved from ground-based remote sensing and aircraft in situ measurements during a Saharan dust event

    Get PDF
    In this work we present an analysis of aerosol microphysical properties during a mineral dust event taking advantage of the combination of different state-of-the-art retrieval techniques applied to active and passive remote sensing measurements and the evaluation of some of those techniques using independent data acquired from in situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak at the Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on 27 June 2011. Column-integrated properties are provided by sun- and star-photometry, which allows for a continuous evaluation of the mineral dust optical properties during both day and nighttime. Both the linear estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during nighttime. LIRIC retrievals reveal the presence of dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 µm3 cm−3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in situ measurements. This study presents for the first time a comparison of the total volume concentration retrieved with LIRIC with independent in situ measurements, obtaining agreement within the estimated uncertainties for both methods and quite good agreement for the vertical distribution of the aerosol layers. Regarding the depolarization, the first published data set of the CAS-POL for polarization ratios is presented here and qualitatively compared with the lidar technique

    Validation of brightness and physical temperature from two scanning microwave radiometers in the 60 GHz O₂ band using radiosonde measurements

    Get PDF
    In this paper, we address the assessment of the tropospheric performance of a new temperature radiometer (TEMPERA) at 60 GHz. With this goal, an intercomparison campaign was carried out at the aerological station of MeteoSwiss in Payerne (Switzerland). The brightness temperature and the tropospheric temperature were assessed by means of a comparison with simultaneous and collocated radiosondes that are launched twice a day at this station. In addition, the TEMPERA performances are compared with the ones from a commercial microwave radiometer (HATPRO), which has some different instrumental characteristics and uses a different inversion algorithm. Brightness temperatures from both radiometers were compared with the ones simulated using a radiative transfer model and atmospheric profiles from radiosondes. A total of 532 cases were analyzed under all weather conditions and evidenced larger brightness temperature deviations between the two radiometers and the radiosondes for the most transparent channels. Two different retrievals for the TEMPERA radiometer were implemented in order to evaluate the effect of the different channels on the temperature retrievals. The comparison with radiosondes evidenced better results very similar to the ones from HATPRO, when the eight more opaque channels were used. The study shows the good performance of TEMPERA to retrieve temperature profiles in the troposphere. The inversion method of TEMPERA is based on the optimal estimation method. The main advantage of this algorithm is that there is no necessity for radiosonde information to achieve good results in contrast to conventional methods as neural networks or lineal regression. Finally, an assessment of the effect of instrumental characteristics as the filter response and the antenna pattern on the brightness temperature showed that they can have an important impact on the most transparent channels

    Intercomparison of stratospheric temperature profiles from a ground-based microwave radiometer with other techniques

    Get PDF
    In this work the stratospheric performance of a relatively new microwave temperature radiometer (TEMPERA) has been evaluated. With this goal in mind, almost 3 years of temperature measurements (January 2014–September 2016) from the TEMPERA radiometer were intercompared with simultaneous measurements from other techniques: radiosondes, MLS satellite and Rayleigh lidar. This intercomparison campaign was carried out at the aerological station of MeteoSwiss at Payerne (Switzerland). In addition, the temperature profiles from TEMPERA were used to validate the temperature outputs from the SD-WACCM model. The results showed in general a very good agreement between TEMPERA and the different instruments and the model, with a high correlation (higher than 0.9) in the temperature evolution at different altitudes between TEMPERA and the different data sets. An annual pattern was observed in the stratospheric temperature with generally higher temperatures in summer than in winter and with a higher variability during winter. A clear change in the tendency of the temperature deviations was detected in summer 2015, which was due to the repair of an attenuator in the TEMPERA spectrometer. The mean and the standard deviations of the temperature differences between TEMPERA and the different measurements were calculated for two periods (before and after the repair) in order to quantify the accuracy and precision of this radiometer over the campaign period. The results showed absolute biases and standard deviations lower than 2 K for most of the altitudes. In addition, comparisons proved the good performance of TEMPERA in measuring the temperature in the stratosphere

    Study of mineral dust entrainment in the planetary boundary layer by lidar depolarisation technique

    Get PDF
    Measurements on 27 June 2011 were performed over the Southern Iberian Peninsula at Granada EARLINET station, using active and passive remote sensing and airborne and surface in-situ data in order to study the entrainment processes between aerosols in the free troposphere and those in the planetary boundary layer (PBL). To this aim the temporal evolution of the lidar depolarisation, backscatter-related Angström exponent and potential temperature profiles were used in combination with the PBL contribution to the aerosol optical depth (AOD). Our results show that the mineral dust entrainment in the PBL was caused by the convective processes which ‘trapped’ the lofted mineral dust layer, distributing the mineral dust particles within the PBL. The temporal evolution of ground-based in-situ data evidenced the impact of this process at surface level. Finally, the amount of mineral dust in the atmospheric column available to be dispersed into the PBL was estimated by means of POLIPHON (Polarizing Lidar Photometer Networking). The dust mass concentration derived from POLIPHON was compared with the coarse-mode mass concentration retrieved with airborne in-situ measurements. Comparison shows differences below 50 µg/m³ (30% relative difference) indicating a relative good agreement between both techniques

    A new methodology for PBL height estimations based on lidar depolarization measurements: analysis and comparison against MWR and WRF model-based results

    Get PDF
    The automatic and non-supervised detection of the planetary boundary layer height (zPBL) by means of lidar measurements was widely investigated during the last several years. Despite considerable advances, the experimental detection still presents difficulties such as advected aerosol layers coupled to the planetary boundary layer (PBL) which usually produces an overestimation of the zPBL. To improve the detection of the zPBL in these complex atmospheric situations, we present a new algorithm, called POLARIS (PBL height estimation based on lidar depolarisation). POLARIS applies the wavelet covariance transform (WCT) to the range-corrected signal (RCS) and to the perpendicular-to-parallel signal ratio (δ) profiles. Different candidates for zPBL are chosen and the selection is done based on the WCT applied to the RCS and δ. We use two ChArMEx (Chemistry-Aerosol Mediterranean Experiment) campaigns with lidar and microwave radiometer (MWR) measurements, conducted in 2012 and 2013, for the POLARIS' adjustment and validation. POLARIS improves the zPBL detection compared to previous methods based on lidar measurements, especially when an aerosol layer is coupled to the PBL. We also compare the zPBL provided by the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model with respect to the zPBL determined with POLARIS and the MWR under Saharan dust events. WRF underestimates the zPBL during daytime but agrees with the MWR during night-time. The zPBL provided by WRF shows a better temporal evolution compared to the MWR during daytime than during night-time

    Cognitive decline in Huntington's disease expansion gene carriers

    No full text

    Reduced Cancer Incidence in Huntington's Disease: Analysis in the Registry Study

    No full text
    Background: People with Huntington's disease (HD) have been observed to have lower rates of cancers. Objective: To investigate the relationship between age of onset of HD, CAG repeat length, and cancer diagnosis. Methods: Data were obtained from the European Huntington's disease network REGISTRY study for 6540 subjects. Population cancer incidence was ascertained from the GLOBOCAN database to obtain standardised incidence ratios of cancers in the REGISTRY subjects. Results: 173/6528 HD REGISTRY subjects had had a cancer diagnosis. The age-standardised incidence rate of all cancers in the REGISTRY HD population was 0.26 (CI 0.22-0.30). Individual cancers showed a lower age-standardised incidence rate compared with the control population with prostate and colorectal cancers showing the lowest rates. There was no effect of CAG length on the likelihood of cancer, but a cancer diagnosis within the last year was associated with a greatly increased rate of HD onset (Hazard Ratio 18.94, p < 0.001). Conclusions: Cancer is less common than expected in the HD population, confirming previous reports. However, this does not appear to be related to CAG length in HTT. A recent diagnosis of cancer increases the risk of HD onset at any age, likely due to increased investigation following a cancer diagnosis
    corecore