553 research outputs found

    Behavior patterns in hormonal treatments using fuzzy logic models

    Get PDF
    Assisted reproductive technologies are a combination of medical strategies designed to treat infertility patients. Ideal stimulation treatment has to be individualized, but one of the main challenges which clinicians face in the everyday clinic is how to select the best medical protocol for a patient. This work aims to look for behavior patterns in this kind of treatments, using fuzzy logic models with the objective of helping gynecologists and embryologists to make decisions that could improve the process of in vitro fertilization. For this purpose, a real-world dataset composed of one hundred and twenty-three (123) patients and five hundred and fifty-nine (559) treatments applied in relation to such patients provided by an assisted reproduction clinic, has been used to obtain the fuzzy models. As conclusion, this work corroborates some known clinic experiences, provides some new ones and proposes a set of questions to be solved in future experiments.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2016-76956- C3-2-RMinisterio de Economía y Competitividad TIN2015-71938-RED

    Next generation DNA sequencing technology delivers valuable genetic markers for the genomic orphan legume species, Bituminaria bituminosa

    Get PDF
    Background: Bituminaria bituminosa is a perennial legume species from the Canary Islands and Mediterranean region that has potential as a drought-tolerant pasture species and as a source of pharmaceutical compounds. Three botanical varieties have previously been identified in this species: albomarginata, bituminosa and crassiuscula. B. bituminosa can be considered a genomic 'orphan' species with very few genomic resources available. New DNA sequencing technologies provide an opportunity to develop high quality molecular markers for such orphan species.Results: 432,306 mRNA molecules were sampled from a leaf transcriptome of a single B. bituminosa plant using Roche 454 pyrosequencing, resulting in an average read length of 345 bp (149.1 Mbp in total). Sequences were assembled into 3,838 isotigs/contigs representing putatively unique gene transcripts. Gene ontology descriptors were identified for 3,419 sequences. Raw sequence reads containing simple sequence repeat (SSR) motifs were identified, and 240 primer pairs flanking these motifs were designed. Of 87 primer pairs developed this way, 75 (86.2%) successfully amplified primarily single fragments by PCR. Fragment analysis using 20 primer pairs in 79 accessions of B. bituminosa detected 130 alleles at 21 SSR loci. Genetic diversity analyses confirmed that variation at these SSR loci accurately reflected known taxonomic relationships in original collections of B. bituminosa and provided additional evidence that a division of the botanical variety bituminosa into two according to geographical origin (Mediterranean region and Canary Islands) may be appropriate. Evidence of cross-pollination was also found between botanical varieties within a B. bituminosa breeding programme.Conclusions: B. bituminosa can no longer be considered a genomic orphan species, having now a large (albeit incomplete) repertoire of expressed gene sequences that can serve as a resource for future genetic studies. This experimental approach was effective in developing codominant and polymorphic SSR markers for application in diverse genetic studies. These markers have already given new insight into genetic variation in B. bituminosa, providing evidence that a division of the botanical variety bituminosa may be appropriate. This approach is commended to those seeking to develop useful markers for genomic orphan species

    The seasonal distribution of a highly commercial fish is related to ontogenetic changes in its feeding strategy

    Get PDF
    Improving the knowledge on the biology, ecology and distribution of marine resources exploited by fisheries is necessary to achieve population recovery and sustainable fisheries management. European hake (Merluccius merluccius) is one of the most important target species in the Mediterranean Sea and is largely overexploited by industrial fisheries. Here, we used two methodological approaches to further investigate the seasonal variation in the spatial distribution of European hake considering ontogenetic changes and trophic ecology in the western Mediterranean Sea. Our main aim was to explore if spatial changes in hake distribution were related to trophic behavior, in addition to key environmental factors. We employed a hierarchical Bayesian species distribution modeling approach (B-SDM), using spatial data from two oceanographic surveys conducted during winter and summer. We analyzed how the environmental variables, together with abundance and mean weight distribution of the main preys identified for European hake, affected the seasonal distribution of the species. Results revealed clear differences in the distribution of the European hake between seasons, which were indeed partially correlated to the distribution of their main preys, in addition to the environment. Stable isotope values and Bayesian isotopic mixing models (MixSIAR) revealed substantial seasonal and ontogenetic differences in trophic habits of European hake, partly matching the spatial distribution results. These findings could have implications for a future seasonal-based adaptive fisheries management, as local depletion of prey, or variation in size and condition may affect European hake presence in this area. Moreover, this study illustrates how the sequential application of methodologies provides a more holistic understanding of species seasonality, which is essential to understand the phenological processes of exploited species and their potential shifts due to environmental changes.Postprin

    IL-23 signaling regulation of pro-inflammatory T-cell migration uncovered by phosphoproteomics

    Full text link
    Interleukin 23 (IL-23) triggers pathogenic features in pro-inflammatory, IL-17-secreting T cells (Th17 and Tγδ17) that play a key role in the development of inflammatory diseases. However, the IL-23 signaling cascade remains largely undefined. Here, we used quantitative phosphoproteomics to characterize IL-23 signaling in primary murine Th17 cells. We quantified 6,888 phosphorylation sites in Th17 cells and found 168 phosphorylations regulated upon IL-23 stimulation. IL-23 increased the phosphorylation of the myosin regulatory light chain (RLC), an actomyosin contractibility marker, in Th17 and Tγδ17 cells. IL-23-induced RLC phosphorylation required Janus kinase 2 (JAK2) and Rho-associated protein kinase (ROCK) catalytic activity, and further study of the IL-23/ROCK connection revealed an unexpected role of IL-23 in the migration of Tγδ17 and Th17 cells through ROCK activation. In addition, pharmacological inhibition of ROCK reduced Tγδ17 recruitment to inflamed skin upon challenge with inflammatory agent Imiquimod. This work (i) provides new insights into phosphorylation networks that control Th17 cells, (ii) widely expands the current knowledge on IL-23 signaling, and (iii) contributes to the increasing list of immune cells subsets characterized by global phosphoproteomic approachesThis work was supported by grants from the Spanish Goverment (Ministry of Economy and Competitiveness). M.N.N, C.A-S, G.P-F, I.R.M and J.P are funded by grants SAF2013-43833-R, SAF2016-78180-R and RYC-2012-10252 to M.N.N. R.C-G and D.C are funded by SAF2014-55579-R to Prof. Sánchez-Madri

    Quantitative phosphoproteomics of cytotoxic T cells to reveal Protein Kinase D 2 regulated networks

    Get PDF
    The focus of the present study was to characterize the phosphoproteome of cytotoxic T cells and to explore the role of the serine threonine kinase PKD2 (Protein Kinase D2) in the phosphorylation networks of this key lymphocyte population. We used Stable Isotope Labeling of Amino acids in Culture (SILAC) combined with phosphopeptide enrichment and quantitative mass-spectrometry to determine the impact of PKD2 loss on the cytotoxic T cells phosphoproteome. We identified 15,871 phosphorylations on 3505 proteins in cytotoxic T cells. 450 phosphosites on 281 proteins were down-regulated and 300 phosphosites on 196 proteins were up-regulated in PKD2 null cytotoxic T cells. These data give valuable new insights about the protein phosphorylation networks operational in effector T cells and reveal that PKD2 regulates directly and indirectly about 5% of the cytotoxic T-cell phosphoproteome. PKD2 candidate substrates identified in this study include proteins involved in two distinct biological functions: regulation of protein sorting and intracellular vesicle trafficking, and control of chromatin structure, transcription, and translation. In other cell types, PKD substrates include class II histone deacetylases such as HDAC7 and actin regulatory proteins such as Slingshot. The current data show these are not PKD substrates in primary T cells revealing that the functional role of PKD isoforms is different in different cell lineages

    El síndrome facetar lumbar: Tratamiento mediante infiltraciones facetarias con fenol

    Get PDF
    Se presenta una serie de 125 pacientes afectos de cuadro de lumbociatalgia atípica, diagnosticados de síndrome facetario y tratados con infiltraciones de solución fenolada en las articulaciones interapofisarias posteriores afectadas, seguidas de un programa de rehabilitación protocolizado tras las infiltraciones. A propósito de los mismos y tras una análisis estadístico de los datos obtenidos del estudio, se establecen algunos criterios para el tratamiento de pacientes aquejados de este tipo de patología.The authors present a series of 125 patients afflicted with an atypical sciatic low-back pain, who were diagnosed of "facet joint syndrome" and treated with injections of phenol solution in the affected lumbar zygapophysial joints. The patients followed a protocolized rehabilitation program. After an statistical analysis of the data obtained from the study, some criteria are stabilized for the treatment of patients suffering this pathology

    Emergence of Toscana Virus in Europe

    Get PDF
    In southern Europe, Toscana virus is one of the three leading causes of aseptic meningitis

    Chondroitin sulphate mediated fusion of brain: neural folds in rat embryons

    Get PDF
    Producción CientíficaPrevious studies have demonstrated that during neural fold fusion in different species, an apical extracellular material rich in glycoconjugates is involved. However, the composi- tion and the biological role of this material remain undeter- mined. In this paper, we show that this extracellular matrix in rat increases notably prior to contact between the neural folds, suggesting the dynamic behaviour of the secretory process. Immunostaining has allowed us to demonstrate that this extracellular matrix contains chondroitin sulphate proteoglycan (CSPG), with a spatio-temporal distribution pattern, suggesting a direct relationship with the process of adhesion. The degree of CSPG involvement in cephalic neu- ral fold fusion in rat embryos was determined by treatment with specific glycosidases. In vitro rat embryo culture and microinjection techniques were employed to carry out se- lective digestion, with chondroitinase AC, of the CSPG on the apical surface of the neural folds; this was done immediately prior to the bonding of the cephalic neural folds. In all the treated embryos, cephalic defects of neural fold fusion could tant role in the fusion of the cephalic neural folds in rat em- bryos, which implies that this proteoglycan could be in- volved in cellular recognition and adhesion. Abbreviations used in this paper CSPG chondroitin sulphate proteoglycan HSPG heparan sulphate proteoglycan PBS phosphate-buffered saline SEM scanning electron microscopy be detected. These results show that CSPG plays an impor

    Genomic regions influencing intramuscular fat in divergently selected rabbit lines

    Get PDF
    [EN] Intramuscular fat (IMF) is one of the main meat quality traits for breeding programs in livestock species. The main objective of this study was to identify genomic regions associated with IMF content comparing two rabbit populations divergently selected for this trait, and to generate a list of putative candidate genes. Animals were genotyped using the Affymetrix Axiom OrcunSNP Array (200k). After quality control, the data involved 477 animals and 93,540 single nucleotide polymorphisms (SNPs). Two methods were used in this research: single marker regressions with the data adjusted by genomic relatedness, and a Bayesian multi-marker regression. Associated genomic regions were located on the rabbit chromosomes (OCU) OCU1, OCU8 and OCU13. The highest value for the percentage of the genomic variance explained by a genomic region was found in two consecutive genomic windows on OCU8 (7.34%). Genes in the associated regions of OCU1 and OCU8 presented biological functions related to the control of adipose cell function, lipid binding, transportation and localization (APOLD1, PLBD1, PDE6H, GPRC5D, and GPRC5A) and lipid metabolic processes (MTMR2). The EWSR1 gene, underlying the OCU13 region, is linked to the development of brown adipocytes. The findings suggest that there is a large component of polygenic effect behind the differences in IMF content in these two lines, as the variance explained by most of the windows was low. The genomic regions of OCU1, OCU8 and OCU13 revealed novel candidate genes. Further studies would be needed to validate the associations and explore their possible application in selection programs.The work was funded by project AGL2014-55921-C2-1-P from National Programme for Fostering Excellence in Scientific and Technical Research -Project I+D. BSS was supported by a FPI grant from the Ministry of Economy and Competitiveness of Spain+ (BES-2015-074194). NIB was supported with a "Ramon y Cajal" grant provided by Ministerio de Ciencia e Innovacion (RYC-2016-19764). CSH and PN were supported by the Medical Research Council (United kingdom, grants MC_PC_U127592696 and MC_PC_U127561128). CSH was supported by Biotechnology and Biological Sciences Research Council (United Kingdom, Grant/Award Number: BBS/E/D/30002276).Sosa-Madrid, BS.; Hernández, P.; Blasco Mateu, A.; Haley, CS.; Fontanesi, L.; Santacreu Jerez, MA.; Pena, RN.... (2020). Genomic regions influencing intramuscular fat in divergently selected rabbit lines. Animal Genetics. 51:58-69. https://doi.org/10.1111/age.12873586951Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., … Searle, S. M. J. (2016). The Ensembl gene annotation system. Database, 2016, baw093. doi:10.1093/database/baw093Aloulou, A., Ali, Y. B., Bezzine, S., Gargouri, Y., & Gelb, M. H. (2012). Phospholipases: An Overview. Methods in Molecular Biology, 63-85. doi:10.1007/978-1-61779-600-5_4Amisten, S., Mohammad Al-Amily, I., Soni, A., Hawkes, R., Atanes, P., Persaud, S. J., … Salehi, A. (2017). Anti-diabetic action of all-trans retinoic acid and the orphan G protein coupled receptor GPRC5C in pancreatic β-cells. Endocrine Journal, 64(3), 325-338. doi:10.1507/endocrj.ej16-0338Astle, W., & Balding, D. J. (2009). Population Structure and Cryptic Relatedness in Genetic Association Studies. Statistical Science, 24(4). doi:10.1214/09-sts307Aulchenko, Y. S., Ripke, S., Isaacs, A., & van Duijn, C. M. (2007). GenABEL: an R library for genome-wide association analysis. Bioinformatics, 23(10), 1294-1296. doi:10.1093/bioinformatics/btm108Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi:10.1093/bioinformatics/bth457Beissinger, T. M., Rosa, G. J., Kaeppler, S. M., Gianola, D., & de Leon, N. (2015). Defining window-boundaries for genomic analyses using smoothing spline techniques. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0105-9Blasco, A., & Pena, R. N. (2018). Current Status of Genomic Maps: Genomic Selection/GBV in Livestock. Animal Biotechnology 2, 61-80. doi:10.1007/978-3-319-92348-2_4Browning, B. L., & Browning, S. R. (2016). Genotype Imputation with Millions of Reference Samples. The American Journal of Human Genetics, 98(1), 116-126. doi:10.1016/j.ajhg.2015.11.020Carneiro, M., Afonso, S., Geraldes, A., Garreau, H., Bolet, G., Boucher, S., … Ferrand, N. (2011). The Genetic Structure of Domestic Rabbits. Molecular Biology and Evolution, 28(6), 1801-1816. doi:10.1093/molbev/msr003Carneiro, M., Rubin, C.-J., Di Palma, F., Albert, F. W., Alföldi, J., Barrio, A. M., … Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science, 345(6200), 1074-1079. doi:10.1126/science.1253714Cesar, A. S., Regitano, L. C., Mourão, G. B., Tullio, R. R., Lanna, D. P., Nassu, R. T., … Coutinho, L. L. (2014). Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genetics, 15(1). doi:10.1186/1471-2156-15-39Chaves, V. E., Frasson, D., & Kawashita, N. H. (2011). Several agents and pathways regulate lipolysis in adipocytes. Biochimie, 93(10), 1631-1640. doi:10.1016/j.biochi.2011.05.018Chen, W.-M., & Abecasis, G. R. (2007). Family-Based Association Tests for Genomewide Association Scans. The American Journal of Human Genetics, 81(5), 913-926. doi:10.1086/521580Claire D’Andre, H., Paul, W., Shen, X., Jia, X., Zhang, R., Sun, L., & Zhang, X. (2013). Identification and characterization of genes that control fat deposition in chickens. Journal of Animal Science and Biotechnology, 4(1). doi:10.1186/2049-1891-4-43Do, D. N., Strathe, A. B., Ostersen, T., Pant, S. D., & Kadarmideen, H. N. (2014). Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Frontiers in Genetics, 5. doi:10.3389/fgene.2014.00307Do, D. N., Schenkel, F. S., Miglior, F., Zhao, X., & Ibeagha-Awemu, E. M. (2018). Genome wide association study identifies novel potential candidate genes for bovine milk cholesterol content. Scientific Reports, 8(1). doi:10.1038/s41598-018-31427-0Fan, B., Du, Z.-Q., Gorbach, D. M., & Rothschild, M. F. (2010). Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals. Asian-Australasian Journal of Animal Sciences, 23(7), 833-847. doi:10.5713/ajas.2010.r.03Gao, Y., Zhang, R., Hu, X., & Li, N. (2007). Application of genomic technologies to the improvement of meat quality of farm animals. Meat Science, 77(1), 36-45. doi:10.1016/j.meatsci.2007.03.026Garrick, D. J. (2011). The nature, scope and impact of genomic prediction in beef cattle in the United States. Genetics Selection Evolution, 43(1). doi:10.1186/1297-9686-43-17Garrick, D. J., & Fernando, R. L. (2013). Implementing a QTL Detection Study (GWAS) Using Genomic Prediction Methodology. Genome-Wide Association Studies and Genomic Prediction, 275-298. doi:10.1007/978-1-62703-447-0_11Gotoh, T., Takahashi, H., Nishimura, T., Kuchida, K., & Mannen, H. (2014). Meat produced by Japanese Black cattle and Wagyu. Animal Frontiers, 4(4), 46-54. doi:10.2527/af.2014-0033Gotoh, T., Nishimura, T., Kuchida, K., & Mannen, H. (2018). The Japanese Wagyu beef industry: current situation and future prospects — A review. Asian-Australasian Journal of Animal Sciences, 31(7), 933-950. doi:10.5713/ajas.18.0333Hocquette, J. F., Gondret, F., Baéza, E., Médale, F., Jurie, C., & Pethick, D. W. (2010). Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers. Animal, 4(2), 303-319. doi:10.1017/s1751731109991091Hopkins, D. L., Fogarty, N. M., & Mortimer, S. I. (2011). Genetic related effects on sheep meat quality. Small Ruminant Research, 101(1-3), 160-172. doi:10.1016/j.smallrumres.2011.09.036Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics, 28(13), 1805-1806. doi:10.1093/bioinformatics/bts251Jin, C., Wang, W., Liu, Y., & Zhou, Y. (2017). RAI3 knockdown promotes adipogenic differentiation of human adipose-derived stem cells by decreasing β-catenin levels. Biochemical and Biophysical Research Communications, 493(1), 618-624. doi:10.1016/j.bbrc.2017.08.142Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90-W97. doi:10.1093/nar/gkw377Lander, E., & Kruglyak, L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genetics, 11(3), 241-247. doi:10.1038/ng1195-241Lionikas, A., Meharg, C., Derry, J. M., Ratkevicius, A., Carroll, A. M., Vandenbergh, D. J., & Blizard, D. A. (2012). Resolving candidate genes of mouse skeletal muscle QTL via RNA-Seq and expression network analyses. BMC Genomics, 13(1), 592. doi:10.1186/1471-2164-13-592López de Maturana, E., Ibáñez-Escriche, N., González-Recio, Ó., Marenne, G., Mehrban, H., Chanock, S. J., … Malats, N. (2014). Next generation modeling in GWAS: comparing different genetic architectures. Human Genetics, 133(10), 1235-1253. doi:10.1007/s00439-014-1461-1Marras, G., Rossoni, A., Schwarzenbacher, H., Biffani, S., Biscarini, F., & Nicolazzi, E. L. (2016). zanardi: an open-source pipeline for multiple-species genomic analysis of SNP array data. Animal Genetics, 48(1), 121-121. doi:10.1111/age.12485Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590Mateescu, R. G., Garrick, D. J., Garmyn, A. J., VanOverbeke, D. L., Mafi, G. G., & Reecy, J. M. (2015). Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle1. Journal of Animal Science, 93(1), 21-27. doi:10.2527/jas.2014-8405McLarenD.G.&SchultzC.M.(1992)Genetic Selection to Improve the Quality and Composition of Pigs. In45th Reciprocal Meat Conferences Proceedings. Colorado State University pp.115–21.Migdał, Ł., Kozioł, K., Pałka, S., Migdał, W., Otwinowska-Mindur, A., Kmiecik, M., … Bieniek, J. (2018). Single nucleotide polymorphisms within rabbits ( Oryctolagus cuniculus ) fatty acids binding protein 4 ( FABP4 ) are associated with meat quality traits. Livestock Science, 210, 21-24. doi:10.1016/j.livsci.2018.01.018Miller, I., Rogel-Gaillard, C., Spina, D., Fontanesi, L., & de Almeida, A. (2014). The Rabbit as an Experimental and Production Animal: From Genomics to Proteomics. Current Protein & Peptide Science, 15(2), 134-145. doi:10.2174/1389203715666140221115135Mortimer, S. I., van der Werf, J. H. J., Jacob, R. H., Hopkins, D. L., Pannier, L., Pearce, K. L., … Pethick, D. W. (2014). Genetic parameters for meat quality traits of Australian lamb meat. Meat Science, 96(2), 1016-1024. doi:10.1016/j.meatsci.2013.09.007Nyima, T., Müller, M., Hooiveld, G. J. E. J., Morine, M. J., & Scotti, M. (2016). Nonlinear transcriptomic response to dietary fat intake in the small intestine of C57BL/6J mice. BMC Genomics, 17(1). doi:10.1186/s12864-016-2424-9Ochsner, K. P., MacNeil, M. D., Lewis, R. M., & Spangler, M. L. (2017). Economic selection index development for Beefmaster cattle I: Terminal breeding objective1. Journal of Animal Science, 95(3), 1063-1070. doi:10.2527/jas.2016.1231Pannier, L., Gardner, G. E., O’Reilly, R. A., & Pethick, D. W. (2018). Factors affecting lamb eating quality and the potential for their integration into an MSA sheepmeat grading model. Meat Science, 144, 43-52. doi:10.1016/j.meatsci.2018.06.035Peña, F., Juárez, M., Bonvillani, A., García, P., Polvillo, O., & Domenech, V. (2011). Muscle and genotype effects on fatty acid composition of goat kid intramuscular fat. Italian Journal of Animal Science, 10(3), e40. doi:10.4081/ijas.2011.e40Pena, R., Ros-Freixedes, R., Tor, M., & Estany, J. (2016). Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs. International Journal of Molecular Sciences, 17(12), 2100. doi:10.3390/ijms17122100Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795Ros-Freixedes, R., Gol, S., Pena, R. N., Tor, M., Ibáñez-Escriche, N., Dekkers, J. C. M., & Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLOS ONE, 11(3), e0152496. doi:10.1371/journal.pone.0152496Sahana, G., Guldbrandtsen, B., & Lund, M. S. (2011). Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. Journal of Dairy Science, 94(1), 479-486. doi:10.3168/jds.2010-3381Schmid, M., & Bennewitz, J. (2017). Invited review: Genome-wide association analysis for quantitative traits in livestock – a selective review of statistical models and experimental designs. Archives Animal Breeding, 60(3), 335-346. doi:10.5194/aab-60-335-2017Song, H., Sun, B., Liao, Y., Xu, D., Guo, W., Wang, T., … Deng, J. (2018). GPRC5A deficiency leads to dysregulated MDM2 via activated EGFR signaling for lung tumor development. International Journal of Cancer, 144(4), 777-787. doi:10.1002/ijc.31726Spencer, C. C. A., Su, Z., Donnelly, P., & Marchini, J. (2009). Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip. PLoS Genetics, 5(5), e1000477. doi:10.1371/journal.pgen.1000477Stephens, M., & Balding, D. J. (2009). Bayesian statistical methods for genetic association studies. Nature Reviews Genetics, 10(10), 681-690. doi:10.1038/nrg2615Sukegawa, S., Miyake, T., Ibi, T., Takahagi, Y., Murakami, H., Morimatsu, F., & Yamada, T. (2013). Multiple marker effects of single nucleotide polymorphisms in three genes,AKIRIN2,EDG1andRPL27A, for marbling development in Japanese Black cattle. Animal Science Journal, 85(3), 193-197. doi:10.1111/asj.12108Sul, J. H., Martin, L. S., & Eskin, E. (2018). Population structure in genetic studies: Confounding factors and mixed models. PLOS Genetics, 14(12), e1007309. doi:10.1371/journal.pgen.1007309Swierczynski, J. (2014). Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World Journal of Gastroenterology, 20(9), 2279. doi:10.3748/wjg.v20.i9.2279Toosi, A., Fernando, R. L., & Dekkers, J. C. M. (2018). Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0402-1Uemoto, Y., Nakano, H., Kikuchi, T., Sato, S., Ishida, M., Shibata, T., … Suzuki, K. (2011). Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Animal Genetics, 43(2), 225-228. doi:10.1111/j.1365-2052.2011.02236.xVisscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. The American Journal of Human Genetics, 101(1), 5-22. doi:10.1016/j.ajhg.2017.06.005Vitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting Natural Selection in Genomic Data. Annual Review of Genetics, 47(1), 97-120. doi:10.1146/annurev-genet-111212-133526Wahl, S., Drong, A., Lehne, B., Loh, M., Scott, W. R., Kunze, S., … Yang, Y. (2016). Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature, 541(7635), 81-86. doi:10.1038/nature20784Wang, W., & Seale, P. (2016). Control of brown and beige fat development. Nature Reviews Molecular Cell Biology, 17(11), 691-702. doi:10.1038/nrm.2016.96Wang, B., Yang, Q., Harris, C. L., Nelson, M. L., Busboom, J. R., Zhu, M.-J., & Du, M. (2016). Nutrigenomic regulation of adipose tissue development — role of retinoic acid: A review. Meat Science, 120, 100-106. doi:10.1016/j.meatsci.2016.04.003Wang, X., Tucker, N. R., Rizki, G., Mills, R., Krijger, P. H., de Wit, E., … Boyer, L. A. (2016). Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. eLife, 5. doi:10.7554/elife.10557Wang, J., Shi, Y., Elzo, M. A., Su, Y., Jia, X., Chen, S., & Lai, S. (2017). Myopalladin gene polymorphism is associated with rabbit meat quality traits. Italian Journal of Animal Science, 16(3), 400-404. doi:10.1080/1828051x.2017.1296333Won, S., Jung, J., Park, E., & Kim, H. (2018). Identification of genes related to intramuscular fat content of pigs using genome-wide association study. Asian-Australasian Journal of Animal Sciences, 31(2), 157-162. doi:10.5713/ajas.17.0218Zhang, H., Wang, Z., Wang, S., & Li, H. (2012). Progress of genome wide association study in domestic animals. Journal of Animal Science and Biotechnology, 3(1). doi:10.1186/2049-1891-3-26Zhang, G.-W., Gao, L., Chen, S.-Y., Zhao, X.-B., Tian, Y.-F., Wang, X., … Lai, S.-J. (2013). Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits. Gene, 527(2), 553-557. doi:10.1016/j.gene.2013.06.024Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-636
    corecore