24 research outputs found
Acute diverticulitis management: evolving trends among Italian surgeons. A survey of the Italian Society of Colorectal Surgery (SICCR)
Acute diverticulitis (AD) is associated with relevant morbidity/mortality and is increasing worldwide, thus becoming a major issue for national health systems. AD may be challenging, as clinical relevance varies widely, ranging from asymptomatic picture to life-threatening conditions, with continuously evolving diagnostic tools, classifications, and management. A 33-item-questionnaire was administered to residents and surgeons to analyze the actual clinical practice and to verify the real spread of recent recommendations, also by stratifying surgeons by experience. CT-scan remains the mainstay of AD assessment, including cases presenting with recurrent mild episodes or women of child-bearing age. Outpatient management of mild AD is slowly gaining acceptance. A conservative management is preferred in non-severe cases with extradigestive air or small/non-radiologically drainable abscesses. In severe cases, a laparoscopic approach is preferred, with a non-negligible number of surgeons confident in performing emergency complex procedures. Surgeons are seemingly aware of several options during emergency surgery for AD, since the rate of Hartmann procedures does not exceed 50% in most environments and damage control surgery is spreading in life-threatening cases. Quality of life and history of complicated AD are the main indications for delayed colectomy, which is mostly performed avoiding the proximal vessel ligation, mobilizing the splenic flexure and performing a colorectal anastomosis. ICG is spreading to check anastomotic stumps' vascularization. Differences between the two experience groups were found about the type of investigation to exclude colon cancer (considering the experience only in terms of number of colectomies performed), the size of the peritoneal abscess to be drained, practice of damage control surgery and the attitude towards colovesical fistula
Effects of high-flow nasal cannula in patients with persistent hypercapnia after an acute COPD exacerbation: a prospective pilot study
BACKGROUND:
Persistent hypercapnia after COPD exacerbation is associated with excess mortality and early rehospitalization. High Flow Nasal cannula (HFNC), may be theoretically an alternative to long-term noninvasive ventilation (NIV), since physiological studies have shown a reduction in PaCO2 level after few hours of treatment.
In this clinical study we assessed the acceptability of HFNC and its effectiveness in reducing the level of PaCO2 in patients recovering from an Acute Hypercapnic Respiratory Failure (AHRF) episode. We also hypothesized that the response in CO2 clearance is dependent on baseline level of hypercapnia.
METHODS:
Fifty COPD patients recovering from an acute exacerbation and with persistent hypercapnia, despite having attained a stable pH (i.e. pH > 7,35 and PaCO2 > 45 mmHg on 3 consecutive measurements), were enrolled and treated with HFNC for at least 8 h/day and during the nighttime
RESULTS:
HFNC was well tolerated with a global tolerance score of 4.0 ± 0.9. When patients were separated into groups with or without COPD/OSA overlap syndrome, the “pure” COPD patients showed a statistically significant response in terms of PaCO2 decrease (p = 0.044). In addition, the subset of patients with a lower pH at enrolment were those who responded best in terms of CO2 clearance (score test for trend of odds, p = 0.0038).
CONCLUSIONS:
HFNC is able to significantly decrease the level of PaCO2 after 72 h only in “pure” COPD patients, recovering from AHRF. No effects in terms of CO2 reduction were found in those with overlap syndrome. The present findings will help guide selection of the best target population and allow a sample size calculation for future long-term randomized control trials of HFNC vs NIV
Hydrochemical characterization of groundwater and surface water supported by multivariate statistical analysis: a case study in the Po plain (in Italy)
Cluster analysis (CA), Â factor analysis (FA), Oglio River, Â hydrofacies,
CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo
The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC. Notably, CDCP1 cooperates with the loss of the tumor suppressor gene PTEN to promote the emergence of metastatic prostate cancer. Mechanistically, we find that androgens suppress CDCP1 expression and that androgen deprivation in combination with loss of PTEN promotes the upregulation of CDCP1 and the subsequent activation of the SRC/MAPK pathway. Moreover, we demonstrate that anti-CDCP1 immunoliposomes (anti–CDCP1 ILs) loaded with chemotherapy suppress prostate cancer growth when administered in combination with enzalutamide. Thus, our study identifies CDCP1 as a powerful driver of prostate cancer progression and uncovers different potential therapeutic strategies for the treatment of metastatic prostate tumors.ISSN:0021-9738ISSN:1558-823
Circulating microRNA analysis in a prospective co-clinical trial identifies MIR652-3p as a response biomarker and driver of regorafenib resistance mechanisms in colorectal cancer
Background: The multi-kinase inhibitor regorafenib has demonstrated efficacy in chemo-refractory metastatic colorectal cancer (mCRC) patients. However, lack of predictive biomarkers and concerns over significant toxicities hamper the use of regorafenib in clinical practice. Methods: Serial liquid biopsies were obtained at baseline and monthly until disease progression in chemo-refractory mCRC patients treated with regorafenib in a phase II clinical trial (PROSPECT-R n=40; NCT03010722) and in a multicentric validation cohort (n=241). Tissue biopsies collected at baseline, after 2 months and at progression in the PROSPECT-R trial were used to establish Patient-Derived Organoids (PDOs) and for molecular analyses. MicroRNA profiling was performed on baseline bloods using the NanoString nCounter platform and results were validated by digital droplet PCR and/or In Situ Hybridization in paired liquid and tissue biopsies. PDOs co-cultures and PDO-xenotransplants were generated for functional analyses. Results: Large-scale microRNA expression analysis in longitudinal matched liquid and tissue biopsies from the PROSPECT-R trial identified MIR652-3p as a biomarker of clinical benefit to regorafenib. These findings were confirmed in an independent validation cohort and in a "control" group of 100 patients treated with lonsurf. Using ex vivo co-culture assays paired with single-cell RNA-sequencing of PDO established pre- and post-treatment, we modelled regorafenib response observed in vivo and in patients, and showed that MIR652-3p controls resistance to regorafenib by impairing regorafenib-induced lethal autophagy and by orchestrating the switch from neo-angiogenesis to vessel co-option. Conclusions: Our results identify MIR652-3p as potential biomarker and as a driver of cell and non-cell autonomous mechanisms of resistance to regorafenib
Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study
Background Patients with COVID-19 can develop acute respiratory distress syndrome (ARDS), which is associated with high mortality. The aim of this study was to examine the functional and morphological features of COVID-19-associated ARDS and to compare these with the characteristics of ARDS unrelated to COVID-19.Methods This prospective observational study was done at seven hospitals in Italy. We enrolled consecutive, mechanically ventilated patients with laboratory-confirmed COVID-19 and who met Berlin criteria for ARDS, who were admitted to the intensive care unit (ICU) between March 9 and March 22, 2020. All patients were sedated, paralysed, and ventilated in volume-control mode with standard ICU ventilators. Static respiratory system compliance, the ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air, ventilatory ratio (a surrogate of dead space), and D-dimer concentrations were measured within 24 h of ICU admission. Lung CT scans and CT angiograms were done when clinically indicated. A dataset for ARDS unrelated to COVID-19 was created from previous ARDS studies. Survival to day 28 was assessed.Findings Between March 9 and March 22, 2020, 301 patients with COVID-19 met the Berlin criteria for ARDS at participating hospitals. Median static compliance was 41 mL/cm H2O (33\u201352), which was 28% higher than in the cohort of patients with ARDS unrelated to COVID-19 (32 mL/cm H2O [25\u201343]; p<0\ub70001). 17 (6%) of 297 patients with COVID-19-associated ARDS had compliances greater than the 95th percentile of the classical ARDS cohort. Total lung weight did not differ between the two cohorts. CT pulmonary angiograms (obtained in 23 [8%] patients with COVID-19-related ARDS) showed that 15 (94%) of 16 patients with D-dimer concentrations greater than the median had bilateral areas of hypoperfusion, consistent with thromboembolic disease. Patients with D-dimer concentrations equal to or less than the median had ventilatory ratios lower than those of patients with D-dimer concentrations greater than the median (1\ub766 [1\ub732\u20131\ub795] vs 1\ub790 [1\ub750\u20132\ub733]; p=0\ub70001). Patients with static compliance equal to or less than the median and D-dimer concentrations greater than the median had markedly increased 28-day mortality compared with other patient subgroups (40 [56%] of 71 with high D-dimers and low compliance vs 18 [27%] of 67 with low D-dimers and high compliance, 13 [22%] of 60 with low D-dimers and low compliance, and 22 [35%] of 63 with high D-dimers and high compliance, all p=0\ub70001).Interpretation Patients with COVID-19-associated ARDS have a form of injury that, in many aspects, is similar to that of those with ARDS unrelated to COVID-19. Notably, patients with COVID-19-related ARDS who have a reduction in respiratory system compliance together with increased D-dimer concentrations have high mortality rate