173 research outputs found

    Fermented mistletoe extract as a multimodal antitumoral agent in gliomas

    Get PDF
    In Europe, commercially available extracts from the white-berry mistletoe (Viscum album L.) are widely used as a complementary cancer therapy. Mistletoe lectins have been identified as main active components and exhibit cytotoxic effects as well as immunomodulatory activity. Since it is still not elucidated in detail how mistle toe extracts such as ISCADOR communicate their effects, we analyzed the mechanisms that might be responsible for their antitumoral function on a molecular and functional level. ISCADOR-treated glioblastoma (GBM) cells down-regulate central genes involved in glioblastoma progression and malignancy such as the cytokine TGF-β and matrix-metalloproteinases. Using in vitro glioblastoma/immune cell co-cultivation assays as well as measurement of cell migration and invasion, we could demonstrate that in glioblastoma cells, lectin-rich ISCADOR M and ISCADOR Q significantly enforce NK-cell-mediated GBM cell lysis. Beside its immune stimulatory effect, ISCADOR reduces the migratory and invasive potential of glioblastoma cells. In a syngeneic as well as in a xenograft glioblastoma mouse model, both pretreatment of tumor cells and intratumoral therapy of subcutaneously growing glioblastoma cells with ISCADOR Q showed delayed tumor growth. In conclusion, ISCADOR Q, showing multiple positive effects in the treatment of glioblastoma, may be a candidate for concomitant treatment of this cancer

    YB-1 dependent oncolytic adenovirus efficiently inhibits tumor growth of glioma cancer stem like cells

    Get PDF
    Background: The brain cancer stem cell (CSC) model describes a small subset of glioma cells as being responsible for tumor initiation, conferring therapy resistance and tumor recurrence. In brain CSC, the PI3-K/AKT and the RAS/mitogen activated protein kinase (MAPK) pathways are found to be activated. In consequence, the human transcription factor YB-1, knowing to be responsible for the emergence of drug resistance and driving adenoviral replication, is phosphorylated and activated. With this knowledge, YB-1 was established in the past as a biomarker for disease progression and prognosis. This study determines the expression of YB-1 in glioblastoma (GBM) specimen in vivo and in brain CSC lines. In addition, the capacity of Ad-Delo3-RGD, an YB-1 dependent oncolytic adenovirus, to eradicate CSC was evaluated both in vitro and in vivo. Methods: YB-1 expression was investigated by immunoblot and immuno-histochemistry. In vitro, viral replication as well as the capacity of Ad-Delo3-RGD to replicate in and, in consequence, to kill CSC was determined by real-time PCR and clonogenic dilution assays. In vivo, Ad-Delo3-RGD-mediated tumor growth inhibition was evaluated in an orthotopic mouse GBM model. Safety and specificity of Ad-Delo3-RGD were investigated in immortalized human astrocytes and by siRNA-mediated downregulation of YB-1. Results: YB-1 is highly expressed in brain CSC lines and in GBM specimen. Efficient viral replication in and virus-mediated lysis of CSC was observed in vitro. Experiments addressing safety aspects of Ad-Delo3-RGD showed that (i) virus production in human astrocytes was significantly reduced compared to wild type adenovirus (Ad-WT) and (ii) knockdown of YB-1 significantly reduced virus replication. Mice harboring othotopic GBM developed from a temozolomide (TMZ)-resistant GBM derived CSC line which was intratumorally injected with Ad-Delo3-RGD survived significantly longer than mice receiving PBS-injections or TMZ treatment. Conclusion: The results of this study supported YB-1 based virotherapy as an attractive therapeutic strategy for GBM treatment which will be exploited further in multimodal treatment concepts

    CXCR7 Functions as a Scavenger for CXCL12 and CXCL11

    Get PDF
    CXCR7 (RDC1), the recently discovered second receptor for CXCL12, is phylogenetically closely related to chemokine receptors, but fails to couple to G-proteins and to induce typical chemokine receptor mediated cellular responses. The function of CXCR7 is controversial. Some studies suggest a signaling activity in mammalian cells and zebrafish embryos, while others indicate a decoy activity in fish. Here we investigated the two propositions in human tissues. We provide evidence and mechanistic insight that CXCR7 acts as specific scavenger for CXCL12 and CXCL11 mediating effective ligand internalization and targeting of the chemokine cargo for degradation. Consistently, CXCR7 continuously cycles between the plasma membrane and intracellular compartments in the absence and presence of ligand, both in mammalian cells and in zebrafish. In accordance with the proposed activity as a scavenger receptor CXCR7-dependent chemokine degradation does not become saturated with increasing ligand concentrations. Active CXCL12 sequestration by CXCR7 is demonstrated in adult mouse heart valves and human umbilical vein endothelium. The finding that CXCR7 specifically scavenges CXCL12 suggests a critical function of the receptor in modulating the activity of the ubiquitously expressed CXCR4 in development and tumor formation. Scavenger activity of CXCR7 might also be important for the fine tuning of the mobility of hematopoietic cells in the bone marrow and lymphoid organs

    Neurophysiological correlates of holistic face processing in adolescents with and without autism spectrum disorder

    Get PDF
    Background: Face processing has been found to be impaired in autism spectrum disorders (ASD). One hypothesis is that individuals with ASD engage in piecemeal compared to holistic face processing strategies. To investigate the role of possible impairments in holistic face processing in individuals with autism, the current study investigated behavioral and electroencephalography (EEG) correlates of face processing (P1/N170 and gamma-band activity) in adolescents with ASD and sex-, age-, and IQ-matched neurotypical controls. Methods: Participants were presented with upright and inverted Mooney stimuli; black and white low information faces that are only perceived as faces when processed holistically. Participants indicated behaviorally the detection of a face. EEG was collected time-locked to the presentation of the stimuli. Results: Adolescents with ASD perceived Mooney stimuli as faces suggesting ability to use holistic processing but displayed a lower face detection rate and slower response times. ERP components suggest slowed temporal processing of Mooney stimuli in the ASD compared to control group for P1 latency but no differences between groups for P1 amplitude and at the N170. Increases in gamma-band activity was similar during the perception of the Mooney images by group, but the ASD group showed prolonged temporal elevation in activity. Conclusion: Overall, our results suggest that adolescents with ASD were able to utilize holistic processing to perceive a face within the Mooney stimuli. Delays in early processing, marked by the P1, and elongated elevation in gamma activity indicate that the neural systems supporting holistic processing are slightly altered suggesting a less automatic and less efficient facial processing system

    CXCR7 functions as a scavenger for CXCL12 and CXCL11

    Get PDF
    Background: CXCR7 (RDC1), the recently discovered second receptor for CXCL12, is phylogenetically closely related to chemokine receptors, but fails to couple to G-proteins and to induce typical chemokine receptor mediated cellular responses. The function of CXCR7 is controversial. Some studies suggest a signaling activity in mammalian cells and zebrafish embryos, while others indicate a decoy activity in fish. Here we investigated the two propositions in human tissues. Methodology/Principal Findings: We provide evidence and mechanistic insight that CXCR7 acts as specific scavenger for CXCL12 and CXCL11 mediating effective ligand internalization and targeting of the chemokine cargo for degradation. Consistently, CXCR7 continuously cycles between the plasma membrane and intracellular compartments in the absence and presence of ligand, both in mammalian cells and in zebrafish. In accordance with the proposed activity as a scavenger receptor CXCR7-dependent chemokine degradation does not become saturated with increasing ligand concentrations. Active CXCL12 sequestration by CXCR7 is demonstrated in adult mouse heart valves and human umbilical vein endothelium. Conclusions/Significance: The finding that CXCR7 specifically scavenges CXCL12 suggests a critical function of the receptor in modulating the activity of the ubiquitously expressed CXCR4 in development and tumor formation. Scavenger activity of CXCR7 might also be important for the fine tuning of the mobility of hematopoietic cells in the bone marrow and lymphoid organs

    The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3 associated phagocytosis

    Get PDF
    Macroautophagy/autophagy delivers damaged proteins and organelles to lysosomes for degradation, and plays important roles in maintaining tissue homeostasis by reducing tissue damage. The translocation of LC3 to the limiting membrane of the phagophore, the precursor to the autophagosome, during autophagy provides a binding site for autophagy cargoes, and facilitates fusion with lysosomes. An autophagy-related pathway called LC3-associated phagocytosis (LAP) targets LC3 to phagosome and endosome membranes during uptake of bacterial and fungal pathogens, and targets LC3 to swollen endosomes containing particulate material or apoptotic cells. We have investigated the roles played by autophagy and LAP in vivo by exploiting the observation that the WD domain of ATG16L1 is required for LAP, but not autophagy. Mice lacking the linker and WD domains, activate autophagy, but are deficient in LAP. The LAP −/- mice survive postnatal starvation, grow at the same rate as littermate controls, and are fertile. The liver, kidney, brain and muscle of these mice maintain levels of autophagy cargoes such as LC3 and SQSTM1/p62 similar to littermate controls, and prevent accumulation of SQSTM1 inclusions and tissue damage associated with loss of autophagy. The results suggest that autophagy maintains tissue homeostasis in mice independently of LC3-associated phagocytosis. Further deletion of glutamate E230 in the coiled-coil domain required for WIPI2 binding produced mice with defective autophagy that survived neonatal starvation. Analysis of brain lysates suggested that interactions between WIPI2 and ATG16L1 were less critical for autophagy in the brain, which may allow a low level of autophagy to overcome neonatal lethality. Abbreviations: CCD: coiled-coil domain; CYBB/NOX2: cytochrome b-245: beta polypeptide; GPT/ALT: glutamic pyruvic transaminase: soluble; LAP: LC3-associated phagocytosis; LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NOD: nucleotide-binding oligomerization domain; NADPH: nicotinamide adenine dinucleotide phosphate; RUBCN/Rubicon: RUN domain and cysteine-rich domain containing Beclin 1-interacting protein; SLE: systemic lupus erythematosus; SQSTM1/p62: sequestosome 1; TLR: toll-like receptor; TMEM: transmembrane protein; TRIM: tripartite motif-containing protein; UVRAG: UV radiation resistance associated gene; WD: tryptophan-aspartic acid; WIPI: WD 40 repeat domain: phosphoinositide interacting

    Clec12a Is an Inhibitory Receptor for Uric Acid Crystals that Regulates Inflammation in Response to Cell Death

    Get PDF
    SummaryRecognition of cell death by the innate immune system triggers inflammatory responses. However, how these reactions are regulated is not well understood. Here, we identify the inhibitory C-type lectin receptor Clec12a as a specific receptor for dead cells. Both human and mouse Clec12a could physically sense uric acid crystals (monosodium urate, MSU), which are key danger signals for cell-death-induced immunity. Clec12a inhibited inflammatory responses to MSU in vitro, and Clec12a-deficient mice exhibited hyperinflammatory responses after being challenged with MSU or necrotic cells and after radiation-induced thymocyte killing in vivo. Thus, we identified a negative regulatory MSU receptor that controls noninfectious inflammation in response to cell death that has implications for autoimmunity and inflammatory disease

    TGF-Beta Modulates the Integrity of the Blood Brain Barrier In Vitro, and Is Associated with Metabolic Alterations in Pericytes

    Get PDF
    The blood–brain barrier (BBB) is a selectively permeable boundary that separates the circulating blood from the extracellular fluid of the brain and is an essential component for brain homeostasis. In glioblastoma (GBM), the BBB of peritumoral vessels is often disrupted. Pericytes, being important to maintaining BBB integrity, can be functionally modified by GBM cells which induce proliferation and cell motility via the TGF-β-mediated induction of central epithelial to mesenchymal transition (EMT) factors. We demonstrate that pericytes strengthen the integrity of the BBB in primary endothelial cell/pericyte co-cultures as an in vitro BBB model, using TEER measurement of the barrier integrity. In contrast, this effect was abrogated by TGF-β or conditioned medium from TGF-β secreting GBM cells, leading to the disruption of a so far intact and tight BBB. TGF-β notably changed the metabolic behavior of pericytes, by shutting down the TCA cycle, driving energy generation from oxidative phosphorylation towards glycolysis, and by modulating pathways that are necessary for the biosynthesis of molecules used for proliferation and cell division. Combined metabolomic and transcriptomic analyses further underscored that the observed functional and metabolic changes of TGF-β-treated pericytes are closely connected with their role as important supporting cells during angiogenic processes

    Carboxypeptidase E transmits its anti-migratory function in glioma cells via transcriptional regulation of cell architecture and motility regulating factors.

    Get PDF
    peer reviewedGlioblastoma (GBM), the most frequent and aggressive malignant primary brain tumor, is characterized by a highly invasive growth. In our previous study we showed that overexpression of Carboxypeptidase E (CPE) mitigated glioma cell migration. In the present study we aimed at deciphering the regulatory mechanisms of the secreted form of CPE (sCPE). By transcriptome analysis and inhibition of signaling pathways involved in the regulation of cell growth and motility, we discovered that overexpression of sCPE was accompanied by differential regulation of mRNAs connected to the motility-associated networks, among others FAK, PAK, Cdc42, integrin, STAT3 as well as TGF-β. Especially SLUG was downregulated in sCPE-overexpressing glioma cells, paralleled by reduced expression of matrix-metalloproteinases (MMP) and, in consequence, by decreased cell migration. Expression of SLUG was regulated by ERK since inhibition of ERK reverted sCPE-mediated SLUG downregulation and enhanced cell motility. In a mouse glioma model, overexpression of sCPE significantly prolonged survival. Our results implicate a novel role for sCPE that mainly affects the expression of motility-associated genes via several signal pathways

    Time to make a change:A call for more experimental research on key mechanisms in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) is a life‐threatening eating disorder, characterised by persistent pathological weight loss behaviours and an intense fear of weight gain and food consumption. Although there is an abundance of scientific theories on the neurobiological, psychological and sociocultural factors thought to be involved in the maintenance of AN, there is little experimental research testing these ideas. The need for theory firmly grounded in empirical evidence becomes strikingly clear when we consider that current treatments for patients with AN are limited in their effectiveness, and relapse after treatment is common
    corecore