1,988 research outputs found

    Gamma-ray Bursts, Classified Physically

    Full text link
    From Galactic binary sources, to extragalactic magnetized neutron stars, to long-duration GRBs without associated supernovae, the types of sources we now believe capable of producing bursts of gamma-rays continues to grow apace. With this emergent diversity comes the recognition that the traditional (and newly formulated) high-energy observables used for identifying sub-classes does not provide an adequate one-to-one mapping to progenitors. The popular classification of some > 100 sec duration GRBs as ``short bursts'' is not only an unpalatable retronym and syntactically oxymoronic but highlights the difficultly of using what was once a purely phenomenological classification to encode our understanding of the physics that gives rise to the events. Here we propose a physically based classification scheme designed to coexist with the phenomenological system already in place and argue for its utility and necessity.Comment: 6 pages, 3 figures. Slightly expanded version of solicited paper to be published in the Proceedings of ''Gamma Ray Bursts 2007,'' Santa Fe, New Mexico, November 5-9. Edited by E. E. Fenimore, M. Galassi, D. Palme

    A Complete Catalog of Swift GRB Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations

    Full text link
    We calculate durations and spectral paramaters for 218 Swift bursts detected by the BAT instrument between and including GRBs 041220 and 070509, including 77 events with measured redshifts. Incorporating prior knowledge into the spectral fits, we are able to measure the characteristic νFν\nu F_{\nu} spectral peak energy Epk,obsE_{\rm pk,obs} and the isotropic equivalent energy EisoE_{\rm iso} (1--10410^4 keV) for all events. This complete and rather extensive catalog, analyzed with a unified methodology, allows us to address the persistence and origin of high-energy correlations suggested in pre-Swift observations. We find that the Epk,obsE_{\rm pk,obs}-EisoE_{\rm iso} correlation is present in the Swift sample; however, the best-fit powerlaw relation is inconsistent with the best-fit pre-Swift relation at >5 sigma significance. Moreover, it has a factor >~ 2 larger intrinsic scatter, after accounting for large errors on Epk,obsE_{\rm pk,obs}. A large fraction of the Swift events are hard and subluminous relative to (and inconsistent with) the pre-Swift relation, in agreement with indications from BATSE GRBs without redshift. Moreover, we determine an experimental threshold for the BAT detector and show how the Epk,obsE_{\rm pk,obs}--EisoE_{\rm iso} correlation arises artificially due to partial correlation with the threshold. We show that pre-Swift correlations found by Amati et al.(2002), Yonetoku et al. (2004), Firmani et al.(2006) (and independently by others) are likely unrelated to the physical properties of GRBs and are likely useless for tests of cosmology. Also, an explanation of these correlations in terms of a detector threshold provides a natural and quantitative explanation for why short-duration GRBs and events at low redshift tend to be outliers to the correlations.Comment: 25 pages, 9 figures, 2 tables, Accepted to Ap

    Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A

    Get PDF
    We present observations of the possible short GRB 180418A in γ\gamma-rays, X-rays, and in the optical. Early optical photometry with the TAROT and RATIR instruments show a bright peak (\approx 14.2 AB mag) between T+28T+28 and T+90T+90 seconds that we interpret as the signature of a reversal shock. Later observations can be modeled by a standard forward shock model and show no evidence of jet break, allowing us to constrain the jet collimation to θj>7\theta_j> 7^\circ. Using deep late-time optical observations we place an upper limit of r>24r>24 AB mag on any underlying host galaxy. The detection of the afterglow in the \textit{Swift} UV filters constrains the GRB redshift to z<1.3z<1.3 and places an upper bound on the γ\gamma-ray isotropic equivalent energy Eγ,iso<3×1051E_{\rm{\gamma,iso}} < 3 \times 10^{51} erg. The properties of this GRB (e.g. duration, hardness ratio, energetic, and environment) lie at the intersection between short and long bursts, and we can not conclusively identify its type. We estimate that the probability that it is drawn from the population of short GRBs is 10\%-30\%.Comment: Accepted por publication in Ap

    On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series Data

    Full text link
    With the coming data deluge from synoptic surveys, there is a growing need for frameworks that can quickly and automatically produce calibrated classification probabilities for newly-observed variables based on a small number of time-series measurements. In this paper, we introduce a methodology for variable-star classification, drawing from modern machine-learning techniques. We describe how to homogenize the information gleaned from light curves by selection and computation of real-numbered metrics ("feature"), detail methods to robustly estimate periodic light-curve features, introduce tree-ensemble methods for accurate variable star classification, and show how to rigorously evaluate the classification results using cross validation. On a 25-class data set of 1542 well-studied variable stars, we achieve a 22.8% overall classification error using the random forest classifier; this represents a 24% improvement over the best previous classifier on these data. This methodology is effective for identifying samples of specific science classes: for pulsational variables used in Milky Way tomography we obtain a discovery efficiency of 98.2% and for eclipsing systems we find an efficiency of 99.1%, both at 95% purity. We show that the random forest (RF) classifier is superior to other machine-learned methods in terms of accuracy, speed, and relative immunity to features with no useful class information; the RF classifier can also be used to estimate the importance of each feature in classification. Additionally, we present the first astronomical use of hierarchical classification methods to incorporate a known class taxonomy in the classifier, which further reduces the catastrophic error rate to 7.8%. Excluding low-amplitude sources, our overall error rate improves to 14%, with a catastrophic error rate of 3.5%.Comment: 23 pages, 9 figure

    Pulse Width Evolution of Late Time X-rays Flares in GRBs: Evidence For Internal Shocks

    Full text link
    We study the duration and variability of late time X-ray flares following gamma-ray bursts (GRBs) observed by the narrow field X-ray telescope (XRT) aboard the {\it Swift} spacecraft. These flares are thought to be indicative of late time activity by the central engine that powers the GRB and produced by means similar to those which produce the prompt emission. We use a non-parametric procedure to study the overall temporal properties of the flares and a structure function analysis to look for an evolution of the fundamental variability time-scale between the prompt and late time emission. We find a strong correlation in 28 individual x-ray flares in 18 separate GRBs between the flare duration and their time of peak flux since the GRB trigger. We also find a qualitative trend of decreasing variability as a function of time since trigger, with a characteristic minimum variability timescale Δt/t=0.1\Delta t/t=0.1 for most flares. We interpret these results as evidence of internal shocks at collision radii that are larger than those that produced the prompt emission. Contemporaneous detections of high energy emission by GLAST could be a crucial test in determining if indeed these X-ray flares originate as internal shocks behind the afterglow, as any X-ray emission originating from behind the afterglow is expected to undergo inverse Compton scattering as it passes through the external shock.Comment: 26 pages, 5 figures, 1 table. Submitted to ApJ. This work expands upon and formalizes our previous report at the October 2006 AAS HEAD Meeting of the discovery of pulse width evolutio

    PTF10nvg: An Outbursting Class I Protostar in the Pelican/North American Nebula

    Get PDF
    During a synoptic survey of the North American Nebula region, the Palomar Transient Factory (PTF) detected an optical outburst (dubbed PTF10nvg) associated with the previously unstudied flat or rising spectrum infrared source IRAS 20496+4354. The PTF R-band light curve reveals that PTF10nvg brightened by more than 5 mag during the current outburst, rising to a peak magnitude of R~13.5 in 2010 Sep. Follow-up observations indicate PTF10nvg has undergone a similar ~5 mag brightening in the K band, and possesses a rich emission-line spectrum, including numerous lines commonly assumed to trace mass accretion and outflows. Many of these lines are blueshifted by ~175 km/s from the North American Nebula's rest velocity, suggesting that PTF10nvg is driving an outflow. Optical spectra of PTF10nvg show several TiO/VO bandheads fully in emission, indicating the presence of an unusual amount of dense (> 10^10 cm^-3), warm (1500-4000 K) circumstellar material. Near-infrared spectra of PTF10nvg appear quite similar to a spectrum of McNeil's Nebula/V1647 Ori, a young star which has undergone several brightenings in recent decades, and 06297+1021W, a Class I protostar with a similarly rich near--infrared emission line spectrum. While further monitoring is required to fully understand this event, we conclude that the brightening of PTF10nvg is indicative of enhanced accretion and outflow in this Class-I-type protostellar object, similar to the behavior of V1647 Ori in 2004-2005.Comment: Accepted to the Astronomical Journal; 21 pages, 11 figures, 6 tables in emulateapj format; v2 fixes typo in abstract; v3 updates status to accepted, adjusts affiliations, adds acknowledgmen
    corecore