253 research outputs found

    Ecological performance differs between range centre and trailing edge populations of a cold-water kelp:implications for estimating net primary productivity

    Get PDF
    Kelp forests are extensive, widely distributed and highly productive. However, despite their importance, reliable estimates of net primary productivity (NPP) are currently unknown for most species and regions. In particular, how performance and subsequent NPP change throughout a species range is lacking. Here, we attempted to resolve this by examining growth and performance of the boreal kelp, Laminaria digitata, from range centre and trailing edge regions in the United Kingdom. During the peak growth season (March/April), range-centre individuals were up to three times heavier and accumulated biomass twice as fast as their trailing-edge counterparts. This was not apparent during the reduced growth season (August/September), when populations within both regions had similar biomass profiles. In total, annual NPP estimates were considerably lower for trailing-edge (181±34 g C m−2 year−1) compared to range-centre (344±33 g C m−2 year−1) populations. Our first-order UK estimates of total standing stock and NPP for L. digitata suggest this species makes a significant contribution to coastal carbon cycling. Further work determining the ultimate fate of this organic matter is needed to understand the overall contribution of kelp populations to regional and global carbon cycles. Nevertheless, we highlight the need for large-scale sampling across multiple populations and latitudes to accurately evaluate kelp species’ contributions to coastal carbon cycling

    Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Get PDF
    Yeasts, which have been a component of the human diet for at least 7000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for Bacteroides thetaiotaomicron (Bt), a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by Bt presents a ‘selfish’ model for the catabolism of this recalcitrant polysaccharide. This report shows how a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet

    The ethics of uncertainty for data subjects

    Get PDF
    Modern health data practices come with many practical uncertainties. In this paper, I argue that data subjects’ trust in the institutions and organizations that control their data, and their ability to know their own moral obligations in relation to their data, are undermined by significant uncertainties regarding the what, how, and who of mass data collection and analysis. I conclude by considering how proposals for managing situations of high uncertainty might be applied to this problem. These emphasize increasing organizational flexibility, knowledge, and capacity, and reducing hazard

    Management of patients who opt for radical prostatectomy during the COVID‐19 pandemic: An International Accelerated Consensus Statement

    Get PDF
    BACKGROUND: Coronavirus disease-19 (COVID-19) pandemic caused delays in definitive treatment of patients with prostate cancer. Beyond the immediate delay a backlog for future patients is expected. Such delays can lead to disease progression. OBJECTIVE: We aimed to develop guidance on criteria for prioritization for surgery and reconfiguring management pathways for non-metastatic stage of prostate cancer who opt for surgical treatment. A second aim was to identify the infection prevention and control (IPC) measures to achieve low likelihood of COVID-19 hazard if radical prostatectomy was to be carried out during the outbreak and whilst the disease is endemic. DESIGN, SETTING AND PARTICIPANTS: An accelerated consensus process and systematic review. We conducted a systematic review of the evidence on COVID-19 and reviewed international guidance on prostate cancer. These were presented to an international prostate cancer expert panel (n=34) through an online meeting. The consensus process underwent three rounds of survey in total. Additions to the second- and third-round surveys were formulated based on the answers and comments from the previous rounds. OUTCOME MEASURES: Consensus opinion was defined as ≥80% agreement, which were used to reconfigure the prostate cancer pathways. RESULTS: Evidence on the delayed management of patients with prostate cancer is scarce. There was 100% agreement that prostate cancer pathways should be reconfigured and develop measures to prevent nosocomial COVID-19 for patients treated surgically. Consensus was reached on prioritization criteria of patients for surgery and management pathways for those who have delayed treatment. IPC measures to achieve a low likelihood of nosocomial COVID-19 were coined as "COVID-19 cold sites". CONCLUSION: Re-configuring management pathways for prostate cancer patients is recommended if significant delay (>3-6 months) in surgical management is unavoidable. The mapped pathways provide guidance for such patients. The IPC processes proposed provide a framework for providing radical prostatectomy within an environment with low COVID-19 risk during the outbreak or when the disease remains endemic. The broader concepts could be adapted to other indications beyond prostate cancer surgery

    Cellular mechanisms by which proinsulin C-peptide prevents insulin-induced neointima formation in human saphenous vein

    Get PDF
    AIMS/HYPOTHESIS: Endothelial cells (ECs) and smooth muscle cells (SMCs) play key roles in the development of intimal hyperplasia in saphenous vein (SV) bypass grafts. In diabetic patients, insulin administration controls hyperglycaemia but cardiovascular complications remain. Insulin is synthesised as a pro-peptide, from which C-peptide is cleaved and released into the circulation with insulin; exogenous insulin lacks C-peptide. Here we investigate modulation of human SV neointima formation and SV-EC and SV-SMC function by insulin and C-peptide. METHODS: Effects of insulin and C-peptide on neointima formation (organ cultures), EC and SMC proliferation (cell counting), EC migration (scratch wound), SMC migration (Boyden chamber) and signalling (immunoblotting) were examined. A real-time RT-PCR array identified insulin-responsive genes, and results were confirmed by real-time RT-PCR. Targeted gene silencing (siRNA) was used to assess functional relevance. RESULTS: Insulin (100 nmol/l) augmented SV neointimal thickening (70% increase, 14 days), SMC proliferation (55% increase, 7 days) and migration (150% increase, 6 h); effects were abrogated by 10 nmol/l C-peptide. C-peptide did not affect insulin-induced Akt or extracellular signal-regulated kinase signalling (15 min), but array data and gene silencing implicated sterol regulatory element binding transcription factor 1 (SREBF1). Insulin (1-100 nmol/l) did not modify EC proliferation or migration, whereas 10 nmol/l C-peptide stimulated EC proliferation by 40% (5 days). CONCLUSIONS/INTERPRETATION: Our data support a causative role for insulin in human SV neointima formation with a novel counter-regulatory effect of proinsulin C-peptide. Thus, C-peptide can limit the detrimental effects of insulin on SMC function. Co-supplementing insulin therapy with C-peptide could improve therapy in insulin-treated patients

    Speech production deficits in early readers: predictors of risk

    Get PDF
    Speech problems and reading disorders are linked, suggesting that speech problems may potentially be an early marker of later difficulty in associating graphemes with phonemes. Current norms suggest that complete mastery of the production of the consonant phonemes in English occurs in most children at around 6–7 years. Many children enter formal schooling (kindergarten) around 5 years of age with near-adult levels of speech production. Given that previous research has shown that speech production abilities and phonological awareness skills are linked in preschool children, we set out to examine whether this pattern also holds for children just beginning to learn to read, as suggested by the critical age hypothesis. In the present study, using a diverse sample, we explored whether expressive phonological skills in 92 5-year-old children at the beginning and end of kindergarten were associated with early reading skills. Speech errors were coded according to whether they were developmentally appropriate, position within the syllable, manner of production of the target sounds, and whether the error involved a substitution, omission, or addition of a speech sound. At the beginning of the school year, children with significant early reading deficits on a predictively normed test (DIBELS) made more speech errors than children who were at grade level. Most of these errors were typical of kindergarten children (e.g., substitutions involving fricatives), but reading-delayed children made more of these errors than children who entered kindergarten with grade level skills. The reading-delayed children also made more atypical errors, consistent with our previous findings about preschoolers. Children who made no speech errors at the beginning of kindergarten had superior early reading abilities, and improvements in speech errors over the course of the year were significantly correlated with year-end reading skills. The role of expressive vocabulary and working memory were also explored, and appear to account for some of these findings

    Effects of acute tryptophan depletion on executive function in healthy male volunteers

    Get PDF
    BACKGROUND: Neurocognitive impairment is frequently described in a number of psychiatric disorders and may be a direct consequence of serotonergic dysfunction. As impairments in executive functions are some of the most frequently described, the purpose of this study was to examine the performance of normal volunteers on a range of executive tasks following a transient reduction of central serotonin (5-HT) levels using the method of acute tryptophan depletion (ATD). METHODS: Fifteen healthy male subjects participated in a within-subject, double-blind, counterbalanced crossover study. ATD was induced by ingestion of a 100 g amino-acid drink. Executive function was evaluated using the Wisconsin Card Sorting Test, Stroop, Verbal Fluency and Trail Making. Visual analogue scales were administered to assess mood. RESULTS: Plasma free and total tryptophan concentrations were significantly reduced by the depleting drink (P < 0.001). ATD selectively improved motor speed/ attention on the Trails A test (P = 0.027), with no effect on subjective ratings of mood. Interaction effects between drink and the order of drink administration were observed on most neurocognitive tests. CONCLUSIONS: The improvement in simple motor speed/ attention following ATD is in keeping with the ascribed role of 5-HT in the cortex, however performance on tests of executive function is not robustly altered. The presence of interaction effects on most tasks suggests that subtle changes may occur but are masked, possibly by simple learning effects, in the context of a crossover design. This has implications for the design of future studies, particularly those examining executive functions

    The Neutrophil's Eye-View: Inference and Visualisation of the Chemoattractant Field Driving Cell Chemotaxis In Vivo

    Get PDF
    As we begin to understand the signals that drive chemotaxis in vivo, it is becoming clear that there is a complex interplay of chemotactic factors, which changes over time as the inflammatory response evolves. New animal models such as transgenic lines of zebrafish, which are near transparent and where the neutrophils express a green fluorescent protein, have the potential to greatly increase our understanding of the chemotactic process under conditions of wounding and infection from video microscopy data. Measurement of the chemoattractants over space (and their evolution over time) is a key objective for understanding the signals driving neutrophil chemotaxis. However, it is not possible to measure and visualise the most important contributors to in vivo chemotaxis, and in fact the understanding of the main contributors at any particular time is incomplete. The key insight that we make in this investigation is that the neutrophils themselves are sensing the underlying field that is driving their action and we can use the observations of neutrophil movement to infer the hidden net chemoattractant field by use of a novel computational framework. We apply the methodology to multiple in vivo neutrophil recruitment data sets to demonstrate this new technique and find that the method provides consistent estimates of the chemoattractant field across the majority of experiments. The framework that we derive represents an important new methodology for cell biologists investigating the signalling processes driving cell chemotaxis, which we label the neutrophils eye-view of the chemoattractant field

    Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass

    Get PDF
    Abstract Background Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. Results In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from ‘Alamo’, a rust-resistant switchgrass cultivar, and ‘Dacotah’, a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar ‘Summer’ plants indicated that the expression of some of these RGHs was developmentally regulated. Conclusions Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop

    Search for rare or forbidden decays of the D0 meson

    Get PDF
    We present a search for nine lepton-number-violating and three lepton-flavor-violating neutral charm decays of the type D0→h'−h−ℓ'+ℓ+ and D0→h'−h+ℓ'±ℓ∓, where h and h′ represent a K or π meson and ℓ and ℓ′ an electron or muon. The analysis is based on 468 fb−1 of e+e− annihilation data collected at or close to the Υ(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the twelve modes, and we establish 90% confidence level upper limits on the branching fractions in the range (1.0–30.6)×10−7. The limits are between 1 and 3 orders of magnitude more stringent than previous measurements.publishedVersio
    corecore