18 research outputs found

    Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment

    Get PDF
    Some mature natural killer (NK) cells cannot be inhibited by major histocompatibility complex (MHC) I molecules, either because they lack corresponding inhibitory receptors or because the host lacks the corresponding MHC I ligands for the receptors. Such NK cells nevertheless remain self-tolerant and exhibit a generalized hyporesponsiveness to stimulation through activating receptors. To address whether NK cell responsiveness is set only during the NK cell differentiation process, we transferred mature NK cells from wild-type (WT) to MHC I–deficient hosts or vice versa. Remarkably, mature responsive NK cells from WT mice became hyporesponsive after transfer to MHC I–deficient mice, whereas mature hyporesponsive NK cells from MHC I–deficient mice became responsive after transfer to WT mice. Altered responsiveness was evident among mature NK cells that had not divided in the recipient animals, indicating that the cells were mature before transfer and that alterations in activity did not require cell division. Furthermore, the percentages of NK cells expressing KLRG1, CD11b, CD27, and Ly49 receptors specific for H-2b were not markedly altered after transfer. Thus, the functional activity of mature NK cells can be reset when the cells are exposed to a changed MHC environment. These findings have important implications for how NK cell functions may be curtailed or enhanced in the context of disease

    A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP

    Get PDF
    The innate immune system responds to unique molecular signatures that are widely conserved among microbes but that are not normally present in host cells. Compounds that stimulate innate immune pathways may be valuable in the design of novel adjuvants, vaccines, and other immunotherapeutics. The cyclic dinucleotide cyclic-di–guanosine monophosphate (c-di-GMP) is a recently appreciated second messenger that plays critical regulatory roles in many species of bacteria but is not produced by eukaryotic cells. In vivo and in vitro studies have previously suggested that c-di-GMP is a potent immunostimulatory compound recognized by mouse and human cells. We provide evidence that c-di-GMP is sensed in the cytosol of mammalian cells via a novel immunosurveillance pathway. The potency of cytosolic signaling induced by c-di-GMP is comparable to that induced by cytosolic delivery of DNA, and both nucleic acids induce a similar transcriptional profile, including triggering of type I interferons and coregulated genes via induction of TBK1, IRF3, nuclear factor κB, and MAP kinases. However, the cytosolic pathway that senses c-di-GMP appears to be distinct from all known nucleic acid–sensing pathways. Our results suggest a novel mechanism by which host cells can induce an inflammatory response to a widely produced bacterial ligand

    NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model.

    No full text
    International audienceInhibitory receptors that engage self-MHC class I molecules enable NK cells to detect disease-associated loss of MHC class I on surrounding cells. Previous studies showed that some NK cells lack all receptors for self-MHC class I, yet fail to exhibit autoimmunity because they are generally hyporesponsive to stimulation. We asked whether NK cells exist in only two states, responsive and hyporesponsive, corresponding to cells that express or fail to express inhibitory receptors for self-MHC class I. The alternative model is that NK cells vary continuously in their responsiveness, based on variations in the number of different inhibitory and stimulatory receptors they express, which is known to vary. In this study, we show in the murine system that NK cell responsiveness increases quantitatively with each added self-MHC-specific inhibitory receptor. Genetic analysis demonstrated that interactions of each of the receptors with self-MHC class I were necessary to observe augmented responsiveness. These findings suggest that NK cell responsiveness is comparable to a rheostat: it is tuned to an optimal set point depending on the inhibitory and stimulatory interactions encountered in the normal environment, so as to ensure self-tolerance and yet optimize sensitivity to changes in normal cells

    Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness

    No full text
    Many NK cells express inhibitory receptors that bind self MHC class I molecules and prevent killing of self-cells, while enabling killing of MHC I-deficient cells. But tolerance also occurs for NK cells that lack inhibitory receptors for self MHC I, and for all NK cells in MHC I-deficient animals. In both cases, NK cells are unresponsive to MHC I-deficient cells and hyporesponsive when stimulated through activating receptors, suggesting that hyporesponsiveness is responsible for self tolerance. We generated irradiation chimeras, or carried out adoptive transfers, with WT and/or MHC I-deficient hematopoietic cells in WT or MHC I-deficient C57BL/6 host mice. Unexpectedly, in WT hosts, donor MHC I-deficient hematopoietic cells failed to induce hyporesponsiveness to activating receptor stimulation, but did induce tolerance to MHC I-deficient grafts. Therefore, these two properties of NK cells are separable. Both tolerance and hyporesponsiveness occurred when the host was MHC I-deficient. Interestingly, infections of mice or exposure to inflammatory cytokines reversed the tolerance of NK cells that was induced by MHC I-deficient hematopoietic cells, but not the tolerance induced by MHC I-deficient non-hematopoietic cells. These data have implications for successful bone marrow transplantation, and suggest that tolerance induced by hematopoietic cells versus non-hematopoietic cells may be imposed by distinct mechanisms
    corecore