83 research outputs found

    Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial

    Get PDF
    Background Early cognitive intervention is the only routine therapeutic approach used for amelioration of intellectual deficits in individuals with Down's syndrome, but its effects are limited. We hypothesised that administration of a green tea extract containing epigallocatechin-3-gallate (EGCG) would improve the effects of non-pharmacological cognitive rehabilitation in young adults with Down's syndrome.; Methods We enrolled adults (aged 16-34 years) with Down's syndrome from outpatient settings in Catalonia, Spain, with any of the Down's syndrome genetic variations (trisomy 21, partial trisomy, mosaic, or translocation) in a double-blind, placebo-controlled, phase 2, single centre trial (TESDAD). Participants were randomly assigned at the IMIM-Hospital del Mar Medical Research Institute to receive EGCG (9 mg/kg per day) or placebo and cognitive training for 12 months. We followed up participants for 6 months after treatment discontinuation. We randomly assigned participants using random-number tables and balanced allocation by sex and intellectual quotient. Participants, families, and researchers assessing the participants were masked to treatment allocation. The primary endpoint was cognitive improvement assessed by neuropsychologists with a battery of cognitive tests for episodic memory, executive function, and functional measurements. Analysis was on an intention-to-treat basis. This trial is registered with ClinicalTrials.gov, number NCT01699711.; Findings The study was done between June 5, 2012, and June 6, 2014. 84 of 87 participants with Down's syndrome were included in the intention-to-treat analysis at 12 months (43 in the EGCG and cognitive training group and 41 in the placebo and cognitive training group). Differences between the groups were not significant on 13 of 15 tests in the TESDAD battery and eight of nine adaptive skills in the Adaptive Behavior Assessment System II (ABAS-II). At 12 months, participants treated with EGCG and cognitive training had significantly higher scores in visual recognition memory (Pattern Recognition Memory test immediate recall, adjusted mean difference: 6.23 percentage points [95% CI 0.31 to 12.14], p=0.039; d 0.4 [0.05 to 0.84]), inhibitory control (Cats and Dogs total score, adjusted mean difference: 0.48 [0.02 to 0.93], p=0.041; d 0.28 [0.19 to 0.74]; Cats and Dogs total response time, adjusted mean difference: -4.58 s [-8.54 to -0.62], p=0.024; d -0.27 [-0.72 to -0.20]), and adaptive behaviour (ABAS-II functional academics score, adjusted mean difference: 5.49 [2.13 to 8.86], p=0.002; d 0.39 [-0.06 to 0.84]). No differences were noted in adverse effects between the two treatment groups.; Interpretation EGCG and cognitive training for 12 months was significantly more effective than placebo and cognitive training at improving visual recognition memory, inhibitory control, and adaptive behaviour. Phase 3 trials with a larger population of individuals with Down's syndrome will be needed to assess and confirm the long-term efficacy of EGCG and cognitive training.; Funding Jerome Lejeune Foundation, Instituto de Salud Carlos III FEDER, MINECO, Generalitat de Catalunya.Peer ReviewedPostprint (author's final draft

    DYRK1A and Activity-Dependent Neuroprotective Protein Comparative Diagnosis Interest in Cerebrospinal Fluid and Plasma in the Context of Alzheimer-Related Cognitive Impairment in Down Syndrome Patients

    Get PDF
    Down syndrome (DS) is a complex genetic condition due to an additional copy of human chromosome 21, which results in the deregulation of many genes. In addition to the intellectual disability associated with DS, adults with DS also have an ultrahigh risk of developing early onset Alzheimer's disease dementia. DYRK1A, a proline-directed serine/threonine kinase, whose gene is located on chromosome 21, has recently emerged as a promising plasma biomarker in patients with sporadic Alzheimer's disease (AD). The protein DYRK1A is truncated in symptomatic AD, the increased truncated form being associated with a decrease in the level of full-length form. Activity-dependent neuroprotective protein (ADNP), a key protein for the brain development, has been demonstrated to be a useful marker for symptomatic AD and disease progression. In this study, we evaluated DYRK1A and ADNP in CSF and plasma of adults with DS and explored the relationship between these proteins. We used mice models to evaluate the effect of DYRK1A overexpression on ADNP levels and then performed a dual-center cross-sectional human study in adults with DS in Barcelona (Spain) and Paris (France). Both cohorts included adults with DS at different stages of the continuum of AD: asymptomatic AD (aDS), prodromal AD (pDS), and AD dementia (dDS). Non-trisomic controls and patients with sporadic AD dementia were included for comparison. Full-form levels of DYRK1A were decreased in plasma and CSF in adults with DS and symptomatic AD (pDS and dDS) compared to aDS, and in patients with sporadic AD compared to controls. On the contrary, the truncated form of DYRK1A was found to increase both in CSF and plasma in adults with DS and symptomatic AD and in patients with sporadic AD with respect to aDS and controls. ADNP levels showed a more complex structure. ADNP levels increased in aDS groups vs. controls, in agreement with the increase in levels found in the brains of mice overexpressing DYRK1A. However, symptomatic individuals had lower levels than aDS individuals. Our results show that the comparison between full-length and truncated-form levels of DYRK1A coupled with ADNP levels could be used in trials targeting pathophysiological mechanisms of dementia in individuals with DS

    DYRK1A, a Novel Determinant of the Methionine-Homocysteine Cycle in Different Mouse Models Overexpressing this Down-Syndrome-Associated Kinase

    Get PDF
    BACKGROUND:Hyperhomocysteinemia, characterized by increased plasma homocysteine level, is associated with an increased risk of atherosclerosis. On the contrary, patients with Down syndrome appear to be protected from the development of atherosclerosis. We previously found a deleterious effect of hyperhomocysteinemia on expression of DYRK1A, a Down-syndrome-associated kinase. As increased expression of DYRK1A and low plasma homocysteine level have been associated with Down syndrome, we aimed to analyze the effect of its over-expression on homocysteine metabolism in mice. METHODOLOGY/PRINCIPAL FINDINGS:Effects of DYRK1A over-expression were examined by biochemical analysis of methionine metabolites, real-time quantitative reverse-transcription polymerase chain reaction, and enzyme activities. We found that over-expression of Dyrk1a increased the hepatic NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities, concomitant with decreased level of plasma homocysteine in three mice models overexpressing Dyrk1a. Moreover, these effects were abolished by treatment with harmine, the most potent and specific inhibitor of Dyrk1a. The increased NAD(P)H:quinone oxidoreductase and S-adenosylhomocysteine hydrolase activities were also found in lymphoblastoid cell lines from patients with Down syndrome. CONCLUSIONS/SIGNIFICANCE:Our results might give clues to understand the protective effect of Down syndrome against vascular defect through a decrease of homocysteine level by DYRK1A over-expression. They reveal a link between the Dyrk1a signaling pathway and the homocysteine cycle

    Altered Gene Expression in Liver from a Murine Model of Hyperhomocysteinemia

    Get PDF
    Cystathionine beta-synthase (CBS) deficiency causes severe hyperhomocysteinemia and other signs of homocystinuria syndrome, in particular a premature atherosclerosis with multiple thrombosis. However, the molecular mechanisms by which homocysteine could interfere with normal cell function are poorly understood in a whole organ like the liver, which is central to the catabolism of homocysteine. We used a combination of differential display and cDNA arrays to analyze differential gene expression in association with elevated hepatic homocysteine levels in CBS-deficient mice, a murine model of hyperhomocysteinemia. Expression of several genes was found to be reproducibly abnormal in the livers of heterozygous and homozygous CBS-deficient mice. We report altered expression of genes encoding ribosomal protein S3a and methylthioadenosine phosphorylase, suggesting such cellular growth and proliferation perturbations may occur in homozygous CBS-deficient mice liver. Many up- or down-regulated genes encoded cytochromes P450, evidence of perturbations of the redox potential in heterozygous and homozygous CBS-deficient mice liver. The expression of various genes involved in severe oxidative processes was also abnormal in homozygous CBS-deficient mice liver. Among them, the expression of heme oxygenase 1 gene was increased, concomitant with overexpression of heme oxygenase 1 at the protein level. Commensurate with the difference in hepatic mRNA paraoxonase 1 abundance, the mean hepatic activity of paraoxonase 1, an enzyme that protects low density lipoprotein from oxidation, was 3-fold lower in homozygous CBS-deficient mice. Heterozygous CBS-deficient mice, when fed a hyperhomocysteinemic diet, have also reduced PON1 activity, which demonstrates the effect of hyperhomocysteinemia in the paraoxonase 1 activity

    Combined assessment of DYRK1A, BDNF and homocysteine levels as diagnostic marker for Alzheimer’s disease

    Get PDF
    Early identification of Alzheimer’s disease (AD) risk factors would aid development of interventions to delay the onset of dementia, but current biomarkers are invasive and/or costly to assess. Validated plasma biomarkers would circumvent these challenges. We previously identified the kinase DYRK1A in plasma. To validate DYRK1A as a biomarker for AD diagnosis, we assessed the levels of DYRK1A and the related markers brain-derived neurotrophic factor (BDNF) and homocysteine in two unrelated AD patient cohorts with age-matched controls. Receiver-operating characteristic curves and logistic regression analyses showed that combined assessment of DYRK1A, BDNF and homocysteine has a sensitivity of 0.952, a specificity of 0.889 and an accuracy of 0.933 in testing for AD. The blood levels of these markers provide a diagnosis assessment profile. Combined assessment of these three markers outperforms most of the previous markers and could become a useful substitute to the current panel of AD biomarkers. These results associate a decreased level of DYRK1A with AD and challenge the use of DYRK1A inhibitors in peripheral tissues as treatment. These measures will be useful for diagnosis purposes.This work was supported by the FEANS. We acknowledge the platform accommodation and animal testing of the animal facility at the Institute Jacques-Monod (University Paris Diderot) and the FlexStation3 facility of the Functional and Adaptive Biology (BFA) LaboratoryPeer reviewe

    Consensus-based care recommendations for adults with myotonic dystrophy type 1

    Get PDF
    Purpose of review Myotonic dystrophy type 1 (DM1) is a severe, progressive genetic disease that affects between 1 in 3,000 and 8,000 individuals globally. No evidence-based guideline exists to inform the care of these patients, and most do not have access to multidisciplinary care centers staffed by experienced professionals, creating a clinical care deficit. Recent findings The Myotonic Dystrophy Foundation (MDF) recruited 66 international clinicians experienced in DM1 patient care to develop consensus-based care recommendations. MDF created a 2-step methodology for the project using elements of the Single Text Procedure and the Nominal Group Technique. The process generated a 4-page Quick Reference Guide and a comprehensive, 55-page document that provides clinical care recommendations for 19 discrete body systems and/or care considerations. Summary The resulting recommendations are intended to help standardize and elevate care for this patient population and reduce variability in clinical trial and study environments. Described as “one of the more variable diseases found in medicine,” myotonic dystrophy type 1 (DM1) is an autosomal dominant, triplet-repeat expansion disorder that affects somewhere between 1:3,000 and 1:8,000 individuals worldwide.1 There is a modest association between increased repeat expansion and disease severity, as evidenced by the average age of onset and overall morbidity of the condition. An expansion of over 35 repeats typically indicates an unstable and expanding mutation. An expansion of 50 repeats or higher is consistent with a diagnosis of DM1. DM1 is a multisystem and heterogeneous disease characterized by distal weakness, atrophy, and myotonia, as well as symptoms in the heart, brain, gastrointestinal tract, endocrine, and respiratory systems. Symptoms may occur at any age. The severity of the condition varies widely among affected individuals, even among members of the same family. Comprehensive evidence-based guidelines do not currently exist to guide the treatment of DM1 patients. As a result, the international patient community reports varied levels of care and care quality, and difficulty accessing care adequate to manage their symptoms, unless they have access to multidisciplinary neuromuscular clinics. Consensus-based care recommendations can help standardize and improve the quality of care received by DM1 patients and assist clinicians who may not be familiar with the significant variability, range of symptoms, and severity of the disease. Care recommendations can also improve the landscape for clinical trial success by eliminating some of the inconsistencies in patient care to allow more accurate understanding of the benefit of potential therapies

    Safety and preliminary efficacy on cognitive performance and adaptive functionality of epigallocatechin gallate (EGCG) in children with Down syndrome. A randomized phase Ib clinical trial (PERSEUS study)

    Full text link
    Purpose: Although some caregivers are using epigallocatechin gallate (EGCG) off label in hopes of improving cognition in young adults with Down syndrome (DS), nothing is known about its safety, tolerability, and efficacy in the DS pediatric population. We aimed to evaluate safety and tolerability of a dietary supplement containing EGCG and if EGCG improves cognitive and functional performance. Methods: A total of 73 children with DS (aged 6-12 years) were randomized. Participants received 0.5% EGCG (10 mg/kg daily dose) or placebo for 6 months with 3 months follow up after treatment discontinuation. Results: In total, 72 children were treated and 66 completed the study. A total of 38 participants were included in the EGCG group and 35 in the placebo group. Of 72 treated participants, 62 (86%) had 229 treatment-emergent adverse events (AEs). Of 37 participants in the EGCG group, 13 (35%) had 18 drug-related treatment-emergent AEs and 12 of 35 (34%) from the placebo group had 22 events. In the EGCG group, neither severe AEs nor increase in the incidence of AEs related to safety biomarkers were observed. Cognition and functionality were not improved compared with placebo. Secondary efficacy outcomes in girls point to a need for future work. Conclusion: The use of EGCG is safe and well-tolerated in children with DS, but efficacy results do not support its use in this population. (C) 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics

    Islet Endothelial Activation and Oxidative Stress Gene Expression Is Reduced by IL-1Ra Treatment in the Type 2 Diabetic GK Rat

    Get PDF
    Inflammation followed by fibrosis is a component of islet dysfunction in both rodent and human type 2 diabetes. Because islet inflammation may originate from endothelial cells, we assessed the expression of selected genes involved in endothelial cell activation in islets from a spontaneous model of type 2 diabetes, the Goto-Kakizaki (GK) rat. We also examined islet endotheliuml/oxidative stress (OS)/inflammation-related gene expression, islet vascularization and fibrosis after treatment with the interleukin-1 (IL-1) receptor antagonist (IL-1Ra)
    corecore