781 research outputs found

    Presence of class I integrons in multidrug-resistant, low-prevalence Salmonella serotypes, Italy.

    Get PDF
    In 1997 to 1999, we detected class I integrons in multidrug-resistant isolates of Salmonella enterica serovars Anatum, Blockley, Brandenburg, Bredeney, Derby, Heidelberg, Livingstone, Newport, Ohio, Panama, Paratyphi B, Saintpaul, Sandiego, and Stanley

    Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research?

    Get PDF
    Abstract: In order to prevent new pathogen outbreaks and avoid possible new global health threats, it is important to study the mechanisms of microbial pathogenesis, screen new antiviral agents and test new vaccines using the best methods. In the last decade, organoids have provided a groundbreaking opportunity for modeling pathogen infections in human brains, including Zika virus (ZIKV) infection. ZIKV is a member of the Flavivirus genus, and it is recognized as an emerging infectious agent and a serious threat to global health. Organoids are 3D complex cellular models that offer an inscale organ that is physiologically alike to the original one, useful for exploring the mechanisms behind pathogens infection; additionally, organoids integrate data generated in vitro with traditional tools and often support those obtained in vivo with animal model. In this mini-review the value of organoids for ZIKV research is examined and sustained by the most recent literature. Within a 3D viewpoint, tissue engineered models are proposed as future biological systems to help in deciphering pathogenic processes and evaluate preventive and therapeutic strategies against ZIKV. The next steps in this field constitute a challenge that may protect people and future generations from severe brain defect

    Shigella sonnei biotype g carrying class 2 integrons in southern Italy: a retrospective typing study by pulsed field gel electrophoresis.

    Get PDF
    Background: Emergence and global dissemination of multiresistant strains of enteric pathogens is a very concerning problem from both epidemiological and Public Health points of view. Shigella sonnei is the serogroup of Shigella most frequently responsible for sporadic and epidemic enteritis in developed countries. The dissemination is associated most often to human to human transmission, but foodborne episodes have also been described. In recent years the circulation of multiresistant strains of S. sonnei biotype g carrying a class 2 integron has been reported in many countries worldwide. In southern Italy a strain with similar properties has been responsible for a large community outbreak occurred in 2003 in Palermo, Sicily. The objective of this study was to date the emergence of the biotype g strain carrying the class 2 integron in southern Italy and to evaluate the genetic heterogeneity of biotype g S. sonnei isolated throughout an extended interval of time. Methods: A total of 31 clinical isolates of S. sonnei biotype g identified in southern Italy during the years 1971\u20132000 were studied. The strains were identified at the serogroup level, characterized by biochemical tests and submitted to antimicrobial susceptibility testing. Molecular typing was performed by pulsed field gel electrophoresis (PFGE) after digestion of DNA by XbaI. Carriage of class 2 integrons was investigated by polymerase chain reaction (PCR) with specific primers and confirmed by restriction endonuclease analysis of amplicons. Results: The 15 isolates of S. sonnei biotype g identified in the decade 1971\u20131980 showed highly heterogeneous drug resistance profiles and pulsotypes. None of the isolates was simultaneous resistant to streptomycin and trimethoprim and none was class 2 integron positive. On the contrary, this resistance phenotype and class 2 integron carriage were very common among the 16 strains of biotype g identified in the following two decades. Moreover, all the more recent isolates, but one, showed closely related pulsotypes. Conclusion: Although our findings refer to a limited geographic area, they provide a snapshot of integron acquisition by an enteric pathogen responsible for several outbreaks in the years 2001\u20132003 in Italy. Molecular typing, indeed, suggests that the emergence of biotype g class 2 integron carrying S. sonnei in southern Italy should be backdated to at least the late 1980s. In the following decades, the circulation of biotype g appears to be sustained by multiresistant highly related strains. Similar trend are described in several countries, but the questions about mechanism of emergence and worldwide spread of this pathogen remain ope

    Coexistence of two- and three-dimensional Shubnikov-de Haas oscillations in Ar^+ -irradiated KTaO_3

    Full text link
    We report the electron doping in the surface vicinity of KTaO_3 by inducing oxygen-vacancies via Ar^+ -irradiation. The doped electrons have high mobility (> 10^4 cm^2/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two- and three-dimensional components. A disparity of the extracted in-plane effective mass, compared to the bulk values, suggests mixing of the orbital characters. Our observations demonstrate that Ar^+ -irradiation serves as a flexible tool to study low dimensional quantum transport in 5d semiconducting oxides

    FORMING ADHERENT COATINGS USING PLASMA PROCESSING

    Get PDF
    Process for forming abherent coatings using plasma processing. Plasma Immersion Ion Processing (PIIP) is a process where energetic (hundreds of eV to many tens of keV) metallic and metalloid ions derived from high-vapor-pressure organometallic compounds in a plasma environment are employed to desposit coatings on suitable substrates, which coatings are subsequently relieved of stress using inert ion bombardment, also in a plasma environment, producing thereby strongly adherent coatings having chosen composition, thickness and density. Four processes are utilized: sputter-cleaning, ion implantation, material deposition, and coating stress relief. Targets are placed directly in a plasma and pulse biased to generate a non-line-of-sight deposition without the need for complex fixturing. If the bias is a relatively high negative potential (20 kV-100 kV) ion implantation will result. At lower voltages (50 V-10 kV), deposition occurs, and the extent of the surface modification can routinely be extended between 1 um and 10 um. By combining plasma based implantation and film deposition, coatings with greatly reduced stress are possible, allowing the ultimate coating thickness to be expanded to tens of microns

    Inhaled sodium cromoglycate to treat cough in advanced lung cancer patients.

    Get PDF
    C-fibres probably represent the common final pathway in both ACE inhibitors and neoplastic cough. A recent report demonstrated that inhaled sodium cromoglycate is an effective treatment for ACE inhibitors' cough; this effect might be due to the suppression of afferent unmyelinated C-fibres. We tested the hypothesis that inhaled sodium cromoglycate might also be effective in lung cancer patients who presented with irritative neoplastic cough. Twenty non-small-cell lung cancer (NSCLC) patients complaining of cough resistant to conventional treatment were randomised to receive, in a double-blind trial, either inhaled sodium cromoglycate or placebo. Patients recorded cough severity daily, before and during treatment, on a 0 to 4 scale. The efficacy of treatment was tested with the Mann-Whitney U-test for non-parametric measures, comparing the intergroup differences in the measures of summary of symptom scores calculated in each patient before and after treatment. We report that inhaled sodium cromoglycate can reduce cough, also in NSCLC patients and that such reduction, observed in all patients treated, is statistically significant (P < 0.001). Inhaled sodium cromoglycate appears to be a cost-effective and safe treatment for lung cancer-related cough

    Enhanced surveillance of invasive listeriosis in the Lombardy region, Italy, in the years 2006-2010 reveals major clones and an increase in serotype 1/2a.

    Get PDF
    Background Invasive listeriosis is a rare, life-threatening foodborne disease. Lombardy, an Italian region accounting for 16% of the total population, reported 55% of all listeriosis cases in the years 2006-2010. The aim of our study was to provide a snapshot of listeriosis epidemiology in this region after the implementation of a voluntary laboratory-based surveillance system. Methods We characterized by serotyping, pulsed-field gel electrophoresis, multilocus sequence typing and detection of epidemic clone markers, 134 isolates from 132 listeriosis cases, including 15 pregnancy-related cases, occurring in the years 2006-2010 in Lombardy. Demographic and clinical characteristics of cases have also been described. Results The mean age of non pregnancy-associated cases was 64.7\u2009years, with 55.9% of cases being older than 65\u2009years. Cases having no underlying medical conditions accounted for 11.6%. The all-cause fatality rate of 83 cases with a known survival outcome was 25.3%. Serotypes 1/2a and 4b comprised 52.2% and 38.8% of isolates, respectively. Seventy-three AscI pulsotypes and 25 sequence types assigned to 23 clonal complexes were recognized. Moreover, 53 (39.5%) isolates tested positive for the epidemic clone markers. Twelve molecular subtype clusters including at least three isolates were detected, with cluster 11 (1/2a/ST38) including 31 isolates identified during the entire study period. No outbreaks were notified to public health authorities during this period. Conclusions The findings of our study proved that epidemiology of listeriosis in Lombardy is characterized by a high prevalence of major clones and the increasing role of serotype 1/2a. Molecular subtyping is an essential tool in the epidemiology and surveillance of listeriosis. Rapid molecular cluster detection could alert about putative outbreaks, thus increasing the chance of detecting and inactivating routes of transmission

    Study on fatigue and energy-dissipation properties of nanolayered Cu/Nb thin films

    Get PDF
    Energy dissipation and fatigue properties of nano-layered thin films are less well studied than bulk properties. Existing experimental methods for studying energy dissipation properties, typically using magnetic interaction as a driving force at different frequencies and a laser-based deformation measurement system, are difficult to apply to two-dimensional materials. We propose a novel experimental method to perform dynamic testing on thin-film materials by driving a cantilever specimen at its fixed end with a bimorph piezoelectric actuator and monitoring the displacements of the specimen and the actuator with a fibre-optic system. Upon vibration, the specimen is greatly affected by its inertia, and behaves as a cantilever beam under base excitation in translation. At resonance, this method resembles the vibrating reed method conventionally used in the viscoelasticity community. The loss tangent is obtained from both the width of a resonance peak and a free-decay process. As for fatigue measurement, we implement a control algorithm into LabView to maintain maximum displacement of the specimen during the course of the experiment. The fatigue S-N curves are obtained

    The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases

    Get PDF
    : In recent years, the role of artificial intelligence (AI) and deep learning (DL) models is attracting increasing global interest in the field of ophthalmology. DL models are considered the current state-of-art among the AI technologies. In fact, DL systems have the capability to recognize, quantify and describe pathological clinical features. Their role is currently being investigated for the early diagnosis and management of several retinal diseases and glaucoma. The application of DL models to fundus photographs, visual fields and optical coherence tomography (OCT) imaging has provided promising results in the early detection of diabetic retinopathy (DR), wet age-related macular degeneration (w-AMD), retinopathy of prematurity (ROP) and glaucoma. In this review we analyze the current evidence of AI applied to these ocular diseases, as well as discuss the possible future developments and potential clinical implications, without neglecting the present limitations and challenges in order to adopt AI and DL models as powerful tools in the everyday routine clinical practice

    Fostering collaborative knowledge construction with visualization tools

    Get PDF
    This study investigates to what extent collaborative knowledge construction can be fostered by providing students with visualization tools as structural support. Thirty-two students of Educational Psychology took part in the study. The students were subdivided into dyads and asked to solve a case problem of their learning domain under one of two conditions: 1) with content-specific visualization 2) with content-unspecific visualization. Results show that by being provided with a content-specific visualization tool, both the process and the outcome of the cooperative effort improved. More specifically, dyads under that condition referred to more adequate concepts, risked more conflicts, and were more successful in integrating prior knowledge into the collaborative solution. Moreover, those learning partners had a more similar individual learning outcome
    • …
    corecore