46 research outputs found

    Growth Kinetics and Distribution of Trace Elements in Precious Corals

    Get PDF
    The concentration and spatial distribution of major (Ca, Mg) and trace elements (Na, Sr, S, Li, Ba, Pb, and U) in different Corallium skeletons (C. rubrum, C. japonicum, C. elatius, C. konojoi) have been studied by electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). EMP data show positive Na-Mg and negative Na-S and Mg-S correlations in all skeletons. LA-ICPMS data display additional Sr-Mg, Li-Mg, and U-Mg positive correlations. Medullar zones in the skeletons, corresponding to fast growing zones, are systematically richer in Mg, Na, Sr, Li, and U and poorer in S than the surrounding slow growing zones. These spatial distributions are mostly interpreted in terms of growth kinetics combined with steric effects influencing the incorporation of impurities in biogenic calcites. This interpretation is in agreement with available experimental data on kinetic effects on the incorporation of elements in calcite. At a different scale, annual growth rings in annular slow growing zones show oscillations in Mg, Na, Sr, and S. These chemical oscillations probably result from growth rate variations: fast growth would produce rings enriched in Mg, Sr, and Na, while slow growth would produce rings enriched in Ca, S and organic matter. From previous studies in C. rubrum, the Mg-rich rings would develop during the spring to fall period while the S-rich rings would form immediately after (late fall and winter). Analytical traverses performed in annular zones of different Corallium skeletons indicate that Mg, Na, Sr, Li, and U decrease from core to rim. This observation indicates that radial growth rate decreases as the colony gets older. Contrary to Mg, Na, Sr, Li, S, and U, barium and lead concentrations are identical in medullar and annular zones and appear independent of growth kinetics. Thus, concentrations in Corallium skeletons could provide indications on Ba and Pb contents in the oceans. Barium and lead concentrations are higher in Mediterranean than in Pacific precious corals, these two elements can be used to discriminate C. rubrum from C. japonicum, and contribute enforcing regulations on the trade of precious corals

    Liver Cancer-Derived Hepatitis C Virus Core Proteins Shift TGF-Beta Responses from Tumor Suppression to Epithelial-Mesenchymal Transition

    Get PDF
    International audienceBACKGROUND: Chronic hepatitis C virus (HCV) infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC) development. TGF-beta is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-beta signaling. PRINCIPAL FINDINGS: We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-beta responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-beta was still able to induce an epithelial to mesenchymal transition (EMT), a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-beta responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-beta growth inhibitory effects to tumor promoting responses. CONCLUSION/SIGNIFICANCE: Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-beta, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-beta responses from cytostatic effects to EMT development

    NY-ESO-1-Specific Circulating CD4+ T Cells in Ovarian Cancer Patients Are Prevalently TH1 Type Cells Undetectable in the CD25+FOXP3+Treg Compartment

    Get PDF
    Spontaneous CD4+ T-cell responses to the tumor-specific antigen NY-ESO-1 (ESO) are frequently found in patients with epithelial ovarian cancer (EOC). If these responses are of effector or/and Treg type, however, has remained unclear. Here, we have used functional approaches together with recently developed MHC class II/ESO tetramers to assess the frequency, phenotype and function of ESO-specific cells in circulating lymphocytes from EOC patients. We found that circulating ESO-specific CD4+ T cells in EOC patients with spontaneous immune responses to the antigen are prevalently TH1 type cells secreting IFN-γ but no IL-17 or IL-10 and are not suppressive. We detected tetramer+ cells ex vivo, at an average frequency of 1∶25000 memory cells, that is, significantly lower than in patients immunized with an ESO vaccine. ESO tetramer+ cells were mostly effector memory cells at advanced stages of differentiation and were not detected in circulating CD25+FOXP3+Treg. Thus, spontaneous CD4+ T-cell responses to ESO in cancer patients are prevalently of TH1 type and not Treg. Their relatively low frequency and advanced differentiation stage, however, may limit their efficacy, that may be boosted by immunogenic ESO vaccines

    The G-Quadruplex Ligand Telomestatin Impairs Binding of Topoisomerase IIIα to G-Quadruplex-Forming Oligonucleotides and Uncaps Telomeres in ALT Cells

    Get PDF
    In Alternative Lengthening of Telomeres (ALT) cell lines, specific nuclear bodies called APBs (ALT-associated PML bodies) concentrate telomeric DNA, shelterin components and recombination factors associated with telomere recombination. Topoisomerase IIIα (Topo III) is an essential telomeric-associated factor in ALT cells. We show here that the binding of Topo III to telomeric G-overhang is modulated by G-quadruplex formation. Topo III binding to G-quadruplex-forming oligonucleotides was strongly inhibited by telomestatin, a potent and specific G-quadruplex ligand. In ALT cells, telomestatin treatment resulted in the depletion of the Topo III/BLM/TRF2 complex and the disruption of APBs and led to the segregation of PML, shelterin components and Topo III. Interestingly, a DNA damage response was observed at telomeres in telomestatin-treated cells. These data indicate the importance of G-quadruplex stabilization during telomere maintenance in ALT cells. The function of TRF2/Topo III/BLM in the resolution of replication intermediates at telomeres is discussed

    Évaluation de l’activité hémostatique in vitro de l’extrait aqueux des feuilles de Marrubium vulgare L.

    No full text
    L'objectif de cette étude est d’évaluer in vitro l’activité hémostatique des métabolites secondaires des feuilles de Marrubium vulgare. L’analyse qualitative de l’extrait aqueux (EAQ) par la chromatographie sur couche mince a révélé la présence de la quercétine, la rutine et le kaempférol. La quantification des phénols totaux par la méthode de Folin Ciocalteu et des flavonoïdes par la méthode AlCl3 a donné des valeurs élevées avec l’EAQ : 175 ± 0,80 mg EAG/100g de MS, 23,86 ± 0,36 mg EQ/100g de MS. De plus, le dosage des tanins condensés par la méthode de la vanilline a montré que l’EAQ contient la valeur la plus élevée : 16,55 ± 0,03 mg E-Catéchine/100g de MS. L’évaluation de l’activité hémostatique par la méthode de recalcification du plasma décalcifié nous a permis de découvrir l’effet anticoagulant de l’EAQ lyophilisé des feuilles de M. vulgare. Une corrélation linéaire positive entre les deux paramètres étudiés (la teneur en tanins condensés et l’activité hémostatique (r = 0,96)) ont permis de mettre en évidence un rôle probable de ces composés qui sont des vaso-constricteurs puissants dans l’activité hémostatique

    Communicating science through the Comics & Science Workshops: the Sarabandes research project

    No full text
    International audienceThe aim of this paper is to analyze the impact of Comics & Science workshops where forty-one teenagers (designated Trainee Science Comic Authors [TSCAs]) are asked to create a one-page comic strip based on a scientific presentation given by a PhD student. Instrumental genesis is chosen as the conceptual framework to characterize the interplay between the specific characteristics of a comic and the pieces of scientific knowledge to be translated. Six workshops were conducted and analyzed. The results show that the TSCAs followed the codes that are specific to the comic strip medium and took some distance with the science integrity. Nevertheless being involved in the creative process allowed them to understand the reasons for certain choices of science illustration or storytelling. This approach can foster the emergence of a critical mind with respect to reading science stories created in other contexts
    corecore