51 research outputs found

    First Record of the Mosquitoes \u3ci\u3eAedes Dupreei Psorophora Horrida,\u3c/i\u3e and \u3ci\u3ePsorophora Mathesoni\u3c/i\u3e (Diptera: Culicidae) in St. Joseph County, Indiana

    Get PDF
    (excerpt) Adult females of Aedes (Ochlerotatus) dupreei (Coquillett), Psorophora (lanthinosoma) horrida (Dyar and Knab), and Psorophora (Janthinosoma) mathesoni (Belkin and Heinemann) were collected on 18 and 19 June 1981, in an oak woodlot in South Bend, Indiana

    Rapid West Nile Virus Antigen Detection

    Get PDF
    We compared the VecTest WNV antigen assay with standard methods of West Nile virus (WNV) detection in swabs from American Crows (Corvus brachyrhynchos) and House Sparrows (Passer domesticus). The VecTest detected WNV more frequently than the plaque assay and was comparable to a TaqMan reverse transcription–polymerase chain reaction

    Tahyna Virus and Human Infection, China

    Get PDF
    In 2006, Tahyna virus was isolated from Culex spp. mosquitoes collected in Xinjiang, People’s Republic of China. In 2007, to determine whether this virus was infecting humans, we tested serum from febrile patients. We found immunoglobulin (Ig) M and IgG against the virus, which suggests human infection in this region

    Quantifying the pathway and predicting spontaneous emulsification during material exchange in a two phase liquid system

    Get PDF
    Kinetic restriction of a thermodynamically favourable equilibrium is a common theme in materials processing. The interfacial instability in systems where rate of material exchange is far greater than the mass transfer through respective bulk phases is of specific interest when tracking the transient interfacial area, a parameter integral to short processing times for productivity streamlining in all manufacturing where interfacial reaction occurs. This is even more pertinent in high-temperature systems for energy and cost savings. Here the quantified physical pathway of interfacial area change due to material exchange in liquid metal-molten oxide systems is presented. In addition the predicted growth regime and emulsification behaviour in relation to interfacial tension as modelled using phase-field methodology is shown. The observed in-situ emulsification behaviour links quantitatively the geometry of perturbations as a validation method for the development of simulating the phenomena. Thus a method is presented to both predict and engineer the formation of micro emulsions to a desired specification

    Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways. (Résumé d'auteur

    Tick-, Mosquito-, and Rodent-Borne Parasite Sampling Designs for the National Ecological Observatory Network [Special Feature: NEON Design]

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways

    COMMENTARY Movement of Chikungunya Virus into the Western Hemisphere

    No full text
    Chikungunya virus (CHIKV) is an alphavirus transmitted in an urban epidemic cycle by the mosquitoes Aedes aegypti and Ae. albopictus. CHIKV outbreaks are characterized by rapid spread and infection rates as high as 75%; 72%–93 % of infected persons become symptomatic. The disease manifests as acute fever and potentially debilitating polyarthralgia. In a variable proportion of cases, polyarthritis and fatigue can persist for 2 years or longer (1). During outbreaks, the large percentage of symptomatic infections places a considerable strain on resources of local health care providers and hospitals. Fortunately, death from chikungunya is rare. CHIKV was first identified in Tanganyika (now Tanzania) in 1952 (2). The virus was later found to be widely distributed and to cause sporadic, mostly small outbreaks in Africa and Asia through the 1960s and 1970s. Little activity was reported from the mid-1980s until June 2004, when an epidemic occurred on Lamu Island, Kenya, then sprea
    • 

    corecore