101 research outputs found
Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae
The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co‐occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100307/1/ele12182.pd
Diversity and temperature indirectly reduce CO2 concentrations in experimental freshwater communities.
Biodiversity loss and climate warming are occurring in concert, with potentially profound impacts on ecosystem functioning. We currently know very little about the combined effects of these changes on the links between the community structure, dynamics and the resulting in situ CO2 concentrations in freshwater ecosystems. Here we aimed to determine both individual and combined effects of temperature and non-resource diversity (species inedible for a given consumer) on CO2 concentration. Our analysis further aimed to establish both direct effects on CO2 concentrations and potential indirect effects that occur via changes to the phytoplankton and zooplankton biomasses. Our results showed that there were no interactive effects of changes in temperature and diversity on CO2 concentration in the water. Instead, independent increases in either temperature or non-resource diversity resulted in a substantial reduction in CO2 concentrations, particularly at the highest non-resource diversity. The effects of non-resource diversity and warming on CO2 were indirect, resulting largely from the positive impacts on total biomass of primary producers. Our study is the first to experimentally partition the impacts of temperature and diversity on the consumer-resource dynamics and associated changes to CO2 concentrations. It provides new mechanistic insights into the role of diverse plankton communities for ecosystem functioning and their importance in regulating CO2 dynamics under ongoing climate warming
Evolution of competitive ability for essential resources
Competition for limiting resources is among the most fundamental ecological interactions and has long been considered a key driver of species coexistence and biodiversity. Species’ minimum resource requirements, their R*, are key traits that link individual physiological demands to the outcome of competition. However, a major question remains unanswered -- to what extent are species’ competitive traits able to evolve in response to resource limitation? To address this knowledge gap, we performed an evolution experiment in which we exposed Chlamydomonas reinhardtii for approximately 285 generations to seven environments in chemostats which differed in resource supply ratios (including nitrogen, phosphorus and light limitation) and salt stress. We then grew the ancestors and descendants in common garden experiments and quantified their competitive abilities for essential resources. We investigated constraints on trait evolution by testing whether changes in resource requirements for different resources were correlated. Competitive abilities for phosphorus improved in all populations, while competitive abilities for nitrogen and light increased in some populations and decreased in others. In contrast to the common assumption that there are trade-offs between competitive abilities for different resources, we found that improvements in competitive ability for a resource came at no detectable cost. Instead, improvements in competitive ability for multiple resources were either positively correlated or not significantly correlated. Using resource competition theory, we then demonstrated that rapid adaptation in competitive traits altered the predicted outcomes of competition. These results highlight the need to incorporate contemporary evolutionary change into predictions of competitive community dynamics over environmental gradients
Temperature-dependence of minimum resource requirements alters competitive hierarchies in phytoplankton
Resource competition theory is a conceptual framework that provides mechanistic insights into competition and community assembly of species with different resource requirements. However, there has been little exploration of how resource requirements depend on other environmental factors, including temperature. Changes in resource requirements as influenced by environmental temperature would imply that climate warming can alter the outcomes of competition and community assembly
Ecological interactions and coexistence are predicted by gene expression similarity in freshwater green algae
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136696/1/jec12759_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136696/2/jec12759.pd
Proteome evolution under non-substitutable resource limitation
Resource limitation is a major driver of the ecological and evolutionary dynamics of organisms. Short-term responses to resource limitation include plastic changes in molecular phenotypes including protein expression. Yet little is known about the evolution of the molecular phenotype under longer-term resource limitation. Here, we combine experimental evolution of the green alga Chlamydomonas reinhardtii under multiple different non-substitutable resource limitation regimes with proteomic measurements to investigate evolutionary adaptation of the molecular phenotype. We demonstrate convergent proteomic evolution of core metabolic functions, including the Calvin-Benson cycle and gluconeogenesis, across different resource limitation environments. We do not observe proteomic changes consistent with optimized uptake of particular limiting resources. Instead, we report that adaptation proceeds in similar directions under different types of non-substitutable resource limitation. This largely convergent evolution of the expression of core metabolic proteins is associated with an improvement in the resource assimilation efficiency of nitrogen and phosphorus into biomass
Human embryonic stem cells from aneuploid blastocysts identified by pre-implantation genetic screening
Human embryonic stem cells are derived from the inner cell mass of pre-implantation embryos. The cells have unlimited proliferation potential and capacity to differentiate into the cells of the three germ layers. Human embryonic stem cells are used to study human embryogenesis and disease modeling and may in the future serve as cells for cell therapy and drug screening. Human embryonic stem cells are usually isolated from surplus normal frozen embryos and were suggested to be isolated from diseased embryos detected by pre-implantation genetic diagnosis. Here we report the isolation of 12 human embryonic stem cell lines and their thorough characterization. The lines were derived from embryos detected to have aneuploidy by pre-implantation genetic screening. Karyotype analysis of these cell lines showed that they are euploid, having 46 chromosomes. Our interpretation is that the euploid cells originated from mosaic embryos, and in vitro selection favored the euploid cells. The undifferentiated cells exhibited long-term proliferation and expressed markers typical for embryonic stem cells such as OCT4, NANOG, and TRA-1-60. The cells manifested pluripotent differentiation both in vivo and in vitro. To further characterize the different lines, we have analyzed their ethnic origin and the family relatedness among them. The above results led us to conclude that the aneuploid mosaic embryos that are destined to be discarded can serve as source for normal euploid human embryonic stem cell lines. These lines represent various ethnic groups; more lines are needed to represent all populations
Present state and future perspectives of using pluripotent stem cells in toxicology research
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed
What information and the extent of information research participants need in informed consent forms: a multi-country survey
Background: The use of lengthy, detailed, and complex informed consent forms (ICFs) is of paramount concern in biomedical research as it may not truly promote the rights and interests of research participants. The extent of information in ICFs has been the subject of debates for decades; however, no clear guidance is given. Thus, the objective of this study was to determine the perspectives of research participants about the type and extent of information they need when they are invited to participate in biomedical research. Methods: This multi-center, cross-sectional, descriptive survey was conducted at 54 study sites in seven Asia-Pacific countries. A modified Likert-scale questionnaire was used to determine the importance of each element in the ICF among research participants of a biomedical study, with an anchored rating scale from 1 (not important) to 5 (very important). Results: Of the 2484 questionnaires distributed, 2113 (85.1%) were returned. The majority of respondents considered most elements required in the ICF to be \u27moderately important\u27 to \u27very important\u27 for their decision making (mean score, ranging from 3.58 to 4.47). Major foreseeable risk, direct benefit, and common adverse effects of the intervention were considered to be of most concerned elements in the ICF (mean score = 4.47, 4.47, and 4.45, respectively). Conclusions: Research participants would like to be informed of the ICF elements required by ethical guidelines and regulations; however, the importance of each element varied, e.g., risk and benefit associated with research participants were considered to be more important than the general nature or technical details of research. Using a participant-oriented approach by providing more details of the participant-interested elements while avoiding unnecessarily lengthy details of other less important elements would enhance the quality of the ICF
- …
