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 30 

Evolution experiment  31 

 32 

We obtained a strain of C. reinhardtii (CC1690 wild type mt+) from the 33 

Chlamydomonas Center (chlamycollection.org). We then grew this strain in semi-34 

continuous liquid batch culture on COMBO freshwater medium [1], without vitamins, 35 

silica and animal trace elements, which are unnecessary for growing green algae. We 36 

maintained batch cultures for several months before the start of the evolution 37 

experiment. We then plated the cultures onto agar. From the agar plates we selected 38 

four random colonies, derived from single cells and inoculated them into liquid 39 

COMBO freshwater medium (hereafter referred to as Anc 2, Anc 3, Anc 4 and Anc 5). 40 

We then inoculated the chemostats (28 mL total volume) with one of the four 41 

monoclonal populations or a genetically diverse population of the original CC1690 42 

population. All populations were composed of a single mating type (+), precluding the 43 

possiblity of sex during the experiment. Here we use the term ‘population’ to refer to 44 

each of Anc 2, Anc 3, Anc 4, Anc 5, cc1690 (‘ancestors’) and their descendant 45 

populations (‘descendants’), which are the populations evolved in one of seven 46 

experimental environments. In total there were five ancestral populations, and 32 47 

descendant populations (three were lost to contamination).   48 

 49 

We randomly assigned one chemostat of each of the 5 ancestral populations (Anc 2-5 50 

and CC1690) to one of seven treatments: COMBO, (which we call C, containing 1000 51 

uM N and 50 uM P), nitrogen limitation (N, 10 uM N and 50 uM P), phosphorus 52 

limitation (P, 1000 uM N, 0.5 uM P), light limitation (L, 5 μmol photons m-2s-1of 53 

light,1000 uM N and 50 uM P), salt stress (S, 8g/L NaCl, 1000 uM N and 50 uM P), 54 

biotically-depleted medium (i.e. medium previously used to grow seven other species 55 

of phytoplankton, (B)), and a combination of salt stress and biotically-depleted medium 56 

[2] (BS, 8g/L NaCl). We prepared the biotically-depleted medium (B) by growing seven 57 

other species of freshwater algae (Cosmarium botrytis, Kirchneriella subcapitata, 58 

Pediastrum boryanum, Pediastrum duplex, Scenedesmus acuminatus, Staurastrum 59 

punctulatum, Tetraedron minimum) individually in 4L batch culture in replete COMBO 60 

(Kilham et al. 1998). We then removed the phytoplankton biomass from each batch 61 

culture via filtration, sterilized the filtrate by autoclaving, and mixed the filtrate from 62 
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each of the seven cultures. The mixture of filtrates is what we called the ‘biotically 63 

depleted medium’ (B). We stored the biotically-depleted medium in the cold (4°C) and 64 

dark until use during the experiment.  65 

 66 

Each chemostat received daily sterile media replacement at a dilution rate of 56% per 67 

day via an automated peristaltic pump and was continuously mixed and aerated to 68 

prevent heterogeneity in resource availability. Chemostats each contained a magnetic 69 

stir bar at their base and were stirred continuously using a stir plate. The combination 70 

of continuous sterile air inflow and stirring kept the chemostats well mixed and 71 

minimized wall growth, and in this way minimized spatial heterogeneity. We 72 

maintained chemostats at 20°C and illuminated under 90 μmol photons m-2s-1of light 73 

(except the light-limitation treatment) on an 18h light: 6h dark cycle. 74 

 75 

The biotically-depleted medium was used to investigate the influence that a biodiverse 76 

community may have on the evolution of a species by simultaneously depleting the 77 

availability of multiple dissolved resources. The salt stress treatment consisted of 78 

increasing concentrations of NaCl. We used salt-stress as a point of reference by which 79 

to compare the influence of a resource limitation. Salt stress is known to induce 80 

evolutionary adaptation (i.e. greater salt tolerance) in C. reinhardtii [3], and in this way 81 

we could compare adaptation to limiting resources to another type of stress. We 82 

maintained the ‘C’ cultures in full COMBO medium for the duration of the experiment. 83 

Resource-limitation and salt-stress increased incrementally each month until a final, 84 

highly-stressful concentration was achieved (ESM Figure S3). The experiment ran for 85 

285 days (~285 generations), after which the evolved populations were harvested and 86 

plated onto agar.  87 

 88 

Culture conditions and acclimation 89 

Prior to R* assays, we transferred populations from agar plates where they had been 90 

maintained for long-term storage after the selection experiment under low light 91 

(amount) and temperature (12°C) to limit growth to COMBO medium [1] and grew 92 

them at 20°C and 140 μmol light (hereafter “standard conditions”) on a 24 hour light 93 

cycle for three days until they reached mid exponential phase. Before the start of each 94 

R* experiment, we allowed each population to acclimate to a relatively low and high 95 

resource level for three days. The low resource acclimation conditions were set to 96 
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match the lowest resource level in the R* experiments so as to minimize transfer of 97 

nutrients from the nutrient replete culture media to the experimental populations. The 98 

high resource acclimation level was set halfway between the lowest and highest 99 

resource level in the R* experiments. The low resource acclimation levels were for light, 100 

nitrogen and phosphorus: 8μmols/m2/s, 5 uM N and 0.5 uM P. The high resource 101 

acclimation levels were for light, nitrogen and phosphorus: 42 μmols/m2/s, 80 uM N, 8 102 

uM P.  103 

 104 

Competitive trait assays 105 

We diluted the ‘low’ and ‘high’ resource acclimation cultures to low cell concentrations 106 

in 50 mL falcon tubes with COMBO media containing N and P at one of ten resource 107 

levels. After diluting each population to very low density (measured as 10 chlorophyll-a 108 

relative fluorescence units (“RFU”)) at each resource level, we transferred the cultures 109 

to the inner 60 wells of 96 well plates (n = 4 replicates per population per resource 110 

level, 125 uL per well), covered the plates with a Breathe-Easy sealing membrane 111 

(Sigma-Aldrich), and moved them to 20°C temperature-controlled incubators 112 

(Multitron, Infors HT, Switzerland), which we set to rotate at 100 rpm. We filled outer 113 

wells with COMBO to prevent evaporative losses across the plate. We then tracked 114 

their growth by measuring chlorophyll-a fluorescence in RFU (excitation=435 nm and 115 

emission=685 nm) over time using a Biotek Cytation 5 plate-reader. We used 116 

chlorophyll-a fluorescence because it can be used as a proxy for algal biomass [4], 117 

particularly during exponential growth from low density. We measured RFUs two or 118 

three times a day for three days, long enough to capture the exponential growth phase 119 

at all resource levels. For the N* and P* experiments, cultures were illuminated at 140.6 120 

μmol photons m-2·s-1 of photosynthetically active radiation (‘PAR’); for the I* 121 

experiments light levels were as described below.  122 

 123 

For the nitrogen R* experiment, the N levels were: 5, 10, 20, 40, 60, 80, 100, 400, 600 124 

and 1000 um N. For the phosphorus R* experiment, the P levels were 0.5, 1, 2, 4, 6, 8, 125 

10, 20, 35 and 50 uM P. For the light R* experiment, N and P were 1000 uM N and 50 126 

uM P respectively, and light was supplied at one of ten levels: 0.25, 1.5, 5, 12.5, 27.5, 127 

50, 82.5, 125, 175 and 250 μmol photons m-2·s-1 of PAR. We manipulated light levels in 128 

the light experiment using neutral density filters (Solar Graphics™, Clearwater, Florida), 129 

which alter the total amount of light supplied without changing light spectrum. We 130 
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mounted the light filters onto opaque frames, which fit over the plates and prevented 131 

unmeasured light from entering the wells from the sides of the plates. We measured 132 

experimental light intensities under the filters using a Skye PAR Quantum sensor.  133 

 134 

Salt tolerance assays 135 

Similar to the methods for the R* assays, all ancestral and descendant populations were 136 

first transferred from storage on agar plates to liquid batch cultures and grown in 137 

standard conditions. They were then transferred to liquid culture to start an acclimation 138 

phase in which each of the populations was subjected to one of five levels of NaCl: 0, 139 

2, 4, 6, and 8 g/L for four days. Each of the populations was then diluted to achieve a 140 

final inoculation density of 50 RFU. Populations from each of the acclimation levels 141 

were used to inoculate assay cultures with the same level of salt, or 1 g/L more (i.e. 0 142 

was used to inoculate 0 and 1 g/L, 2 to inoculate 2 and 3 g/L, etc.). For the final growth 143 

rate assays, each population was grown in 10 mL of medium in 6-well plates, with a 144 

single replicate per population x salt level. We estimated salt tolerance by growing 145 

populations over a salt gradient of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 g/L for nine days. To 146 

estimate growth rates, RFUs were measured once per day for nine days.   147 

 148 

Estimating consumption vectors via stoichiometry 149 

We quantified the consumption vectors for nitrogen and phosphorus for each 150 

population. The consumption vector [5] quantifies the amount of each of these two 151 

resources used by each individual consumes per unit time. We estimated these vectors 152 

by measuring the ratio of phosphorus to nitrogen in the biomass of each population as 153 

it was growing exponentially [6]. Stoichiometry during the exponential phase primarily 154 

reflects the structural pool of nutrients (vs. the storage pool) [7].  We started by 155 

inoculating each population into a 400 mL tissue culture flask with COMBO [1]. We 156 

then allowed these populations to grow for approximately 1.5 days under standard 157 

conditions until they reached their mid-exponential phase. We then harvested the algal 158 

biomass by filtering each culture onto one ashed (400 °C) and pre-massed Whatman ® 159 

glass microfiber filter (grade GF/F 47 mm) and one 25mm Whatman glass microfiber 160 

filter. We then dried the filters dried in an oven overnight at 60 °C, and post-massed 161 

the 47mm filters to obtain an estimate of total dry biomass per mL of culture filtered. 162 

The 47mm filter was used to estimate the elemental carbon and nitrogen content of 163 

the biomass on an Elementar vario PYRO cube EA-IRMS, and the 25 mm filter was used 164 
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to estimate phosphorus content using Skalar San++Continuous Flow P/N analyser. The 165 

phosphorus samples were first digested and completely oxidized using a 166 

peroxydisulfate solution. We diluted the digested samples 1:20 before being run on 167 

the P/N analyser. 168 

 169 

Estimating cell size  170 

After the final RFU measurements, we fixed the populations in each well by adding a 171 

10% glutaraldehyde fixative (get details) solution, and stored the plates at 4°C until 172 

later analysis. To estimate cell size, we took Brightfield photos of the base of each well 173 

at 10x on a BioTek Cytation 5 imaging plate reader, from which we extracted cell 174 

length (using Gen5 software (BioTek version 2.0), which we converted to biovolume, 175 

assuming the cells were spheres (i.e. 4/3 × π × radius3).  176 

 177 

Quantifying genetic changes associated with selection environments 178 

To gain insight into the genetic responses of C. reinhardtii to the selection 179 

environments, we prepared Illumina HiSeq libraries of the ancestors and descendants. 180 

The ancestral populations of all 4 clonal populations and the original cc1690 181 

population were plated onto Sueoka’s high salt agar [8] and grown on agar plates for 1 182 

month. We harvested the lawn of cells by scraping the agar and placing the biomass 183 

into microfuge tubes before performing the DNA extraction. The descendant 184 

populations were grown in 50 mL liquid batch cultures in COMBO medium in standard 185 

conditions for one week. Due to low level bacterial contamination, and to ensure that 186 

sequences were highly enriched by C. reinhardtii, these cultures were subjected to an 187 

antibiotic treatment of 50 mg/L ampicillin and 50 mg/L tetracycline overnight (<24 188 

hours), before harvesting the cells for DNA extraction [9]. The cells were then harvested 189 

by centrifugation at 4,000 rpm.  The DNA extraction protocol was adapted from the 190 

Plant Lab protocol (Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa Italy and 191 

[10]).  192 

  193 

DNA sequencing libraries were prepared using the Bioo Scientific NEXTflex Rapid 194 

Illumina DNA-Seq Library Prep Kit according to the standard protocol.  DNA 195 

sequencing was performed on Illumina HiSeq 2500 version 4 using 125 bp paired ends 196 

(250 sequencing cycles). After sequencing the read quality was verified using FastQC 197 

version 0.11.2. Adaptor and PhiX cleaning were performed using BBDuk version 35.43, 198 



7 

using k-mer size 20 for the former. Quality filtering was performed using PRINSEQ 199 

version 0.20.4 with a minimum read length of 50 bp, GC range of 15-85% and 200 

minimum mean quality score 5. The quality-filtered reads were aligned against the C. 201 

reinhardtii reference version 5.0 [11] using Bowtie2 version 2.2.5. Variants were called 202 

from the resulting BAM files using Freebayes version 1.1.0. The resulting VCF files were 203 

quality-filtered using bcftools version 1.4 to select above SNP quality 20 and excluding 204 

any SNPs closer to 10 bp from any INDEL due to known read mapping errors around 205 

such mutations. The filtered VCF files further processed in R version 3.5.1 using library 206 

Tidyverse version 1.2.1 and Bioconductor package VariantAnnotation version 1.28.11. 207 

The mutations between the ancestors and descendants were determined by 208 

comparing their SNP profiles, determined by comparison to the C. reinhardtii cc503 209 

mt+, reference version 5.0, using custom R scripts. The R code for sequence 210 

processing is available at https://github.com/joeybernhardt/chlamee-r-211 

star/blob/master/genomics/workflow.R. The DNA sequences have been deposited in 212 

the Sequence Read Archive (SRA) under the BioProject ID PRJNA558172.  213 
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