11 research outputs found

    Dynamics of disease : origins and ecology of avian cholera in the eastern Canadian arctic

    Get PDF
    Avian cholera, caused by infection with Pasteurella multocida, is an important infectious disease of wild birds in North America Since it was first confirmed in 2005, annual outbreaks of avian cholera have had a dramatic effect on common eiders on East Bay Island, Nunavut, one of the largest breeding colonies of northern common eiders (Somateria mollissima borealis) in the eastern Arctic. I investigated potential avian and environmental reservoirs of P. multocida on East Bay Island and other locations in the eastern Canadian Arctic by collecting cloacal and oral swabs from live or harvested, apparently healthy, common eiders, lesser snow geese, Ross’s geese, king eiders, herring gulls, and snow buntings. Water and sediment from ponds on East Bay Island were sampled before and during outbreaks. Avian and environmental samples were tested using a real-time polymerase chain reaction (PCR) assay to detect P. multocida. PCR positive birds were found in every species except for snow buntings, and PCR positive common eiders were found in most locations, supporting the hypothesis that apparently healthy wild birds can act as a reservoir for avian cholera. In all years, P. multocida DNA was detected in ponds both before and after the avian cholera outbreak began each year, suggesting that the environment also plays a role in outbreak dynamics. Contrary to our expectations, model results revealed that ponds were generally more likely to be positive earlier in the season, before the outbreaks began. Whereas average air temperature at the beginning of the breeding season was not an important predictor for detecting P. multocida in ponds, eiders were more likely to be PCR positive under cooler conditions, pointing to an important link between disease and weather. Potential origins of P. multocida causing avian cholera in Arctic eider colonies were investigated by comparing eastern Arctic isolates of P. multocida to isolates from wild birds across Canada, and the central flyway in the United States. Using repetitive extragenic palindromic-PCR (REP-PCR) and multi-locus sequence typing (MLST), we detected a low degree of genetic diversity among isolates, and P. multocida genotypes were correlated with somatic serotype. Isolates from East Bay Island were distinct from P. multocida from eider colonies in the St. Lawrence Estuary, Quebec, however, East Bay Island isolates were indistinguishable from isolates collected from a 2007 pelagic avian cholera outbreak on the east coast of Canada. Isolates from East Bay Island and Nunavik shared sequence types, indicating possible transmission of isolates among eider colonies in the eastern Arctic. Previously, feather corticosterone in eiders was found to be significantly associated with environmental temperature during the moulting period. In my study, path analysis revealed that environmental conditions experienced during the moulting period had direct impacts on arrival date and pre-breeding body condition of common eiders during the subsequent breeding period on East Bay Island, with indirect impacts on both reproductive success and survival. Higher temperatures experienced during the fall moulting period appear to impose significant costs to eiders, with subsequent carry-over effects on both survival and reproduction many months later during avian cholera outbreaks. This thesis describes several important features of the host, agent and environmental dynamics of avian cholera in North America with a particular focus on the disease in the eastern Canadian Arctic. Continued exploration of infectious wildlife disease dynamics is needed to better predict, detect, manage, and mitigate disease emergence that can threaten human and animal health and species conservation

    No selection on immunological markers in response to a highly virulent pathogen in an Arctic breeding bird

    Get PDF
    In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or ‘markers’) might provide insights into possible intervention strategies during epidemics. We assessed potential for selection on multiple immune and life history traits of Arctic breeding common eiders (Somateria mollissima) during annual avian cholera outbreaks (summers of 2006, 2007 & 2008). We measured prelaying body condition, immune traits, and subsequent reproductive investment (i.e., clutch size) and survival of female common eiders and whether they were infected with Pasteurella multocida, the causative agent of avian cholera. We found no clear and consistent evidence of directional selection on immune traits; however, infected birds had higher levels of haptoglobin than uninfected birds. Also, females that laid larger clutches had slightly lower immune responses during the prelaying period reflecting possible downregulation of the immune system to support higher costs of reproduction. This supports a recent study indicating that birds investing in larger clutches were more likely to die from avian cholera and points to a possible management option to maximize female survival during outbreaks

    No selection on immunological markers in response to a highly virulent pathogen in an Arctic breeding bird

    Get PDF
    In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or 'markers') might provide insights into possible intervention strategies during epidemics. We assessed potential for selection on multiple immune and life history traits of Arctic breeding common eiders (Somateria mollissima) during annual avian cholera outbreaks (summers of 2006, 2007 & 2008). We measured prelaying body condition, immune traits, and subsequent reproductive investment (i.e., clutch size) and survival of female common eiders and whether they were infected with Pasteurella multocida, the causative agent of avian cholera. We found no clear and consistent evidence of directional selection on immune traits; however, infected birds had higher levels of haptoglobin than uninfected birds. Also, females that laid larger clutches had slightly lower immune responses during the prelaying period reflecting possible downregulation of the immune system to support higher costs of reproduction. This supports a recent study indicating that birds investing in larger clutches were more likely to die from avian cholera and points to a possible management option to maximize female survival during outbreaks

    A transdisciplinary approach to Brucella in Muskoxen of the Western Canadian Arctic 1989-2016

    Get PDF
    Brucella serostatus was evaluated in 3189 muskoxen sampled between 1989 and 2016 from various locations of the Canadian Arctic archipelago and mainland, near the communities of Sachs Harbour and Ulukhaktok, Northwest Territories, and Cambridge Bay and Kugluktuk, Nunavut. Brucella antibodies were found only in muskoxen sampled around Cambridge Bay, both on southern Victoria Island and on the adjacent mainland (Kent Peninsula). Consistent with participatory epidemiology data documented from local harvesters describing increased Brucella-like syndromes (swollen joints and lameness) and a decreased proportion of juveniles, the apparent Brucella seroprevalence in the sampled muskoxen of the Cambridge Bay area increased from 0.9% (95% CI 0.3–2.1) in the period of 1989–2001 to 5.6% (95% CI 3.3–8.9) in 2010–2016. The zoonotic bacteria Brucella suis biovar 4 was also cultured from tissues of muskoxen sampled on Victoria Island near Ulukhaktok in 1996 (n = 1) and Cambridge Bay in 1998, 2014, and 2016 (n = 3). Overall, our data demonstrate that B. suis biovar 4 is found in muskoxen that are harvested for food and by guided hunts on Victoria Island and Kent Peninsula, adding an important public health dimension to this study. Robust participatory epidemiology data on muskox health and diseases greatly enhanced the interpretation of our Cambridge Bay data and, combined with the serological and microbiological data, provide compelling evidence that the prevalence of B. suis biovar 4 has increased in this area since the late 1990s. This study enhances the available knowledge on Brucella exposure and infection in muskoxen and provides an example of how scientific knowledge and local knowledge can work together to better understand disease status in wildlife

    Data from: No selection on immunological markers in response to a highly virulent pathogen in an Arctic breeding bird

    No full text
    In natural populations, epidemics provide opportunities to look for intense natural selection on genes coding for life history and immune or other physiological traits. If the populations being considered are of management or conservation concern, then identifying the traits under selection (or ‘markers’) might provide insights into possible intervention strategies during epidemics. We assessed potential for selection on multiple immune and life history traits of Arctic breeding common eiders (Somateria mollissima) during annual avian cholera outbreaks (summers of 2006, 2007 & 2008). We measured prelaying body condition, immune traits, and subsequent reproductive investment (i.e., clutch size) and survival of female common eiders and whether they were infected with Pasteurella multocida, the causative agent of avian cholera. We found no clear and consistent evidence of directional selection on immune traits; however, infected birds had higher levels of haptoglobin than uninfected birds. Also, females that laid larger clutches had slightly lower immune responses during the prelaying period reflecting possible downregulation of the immune system to support higher costs of reproduction. This supports a recent study indicating that birds investing in larger clutches were more likely to die from avian cholera and points to a possible management option to maximize female survival during outbreaks

    dataDryad15052014

    No full text
    Dataset used to test for directional selection on immune traits. Body size and mass measurements are provided as well as data for the 8 immune traits. The LIVEDEAD column provides information on the fate of individuals (1 is dead, 0 alive). BLEEDING.TIME is in min

    Potlatch and the articulation of modes of production: revisiting French Marxist Anthropology and the history of central Africa

    Get PDF
    This essay seeks to understand the potlatch as indicative of a wider category of exchange. Looking at the similarity in wild exchange rituals between northwestern America and central Africa the article argues that potlatch ritual is not as an archaic remnant but a product of the interaction between capitalist and ‘human’ modes of production. In this dynamic ‘human modes of production’ (see anon) did not become capitalist, but rather there was a ritual escalation related to a series of non-capitalist imperatives based in rights in people and theatrical displays of authority. In constructing the theoretical structure used to make this case I draw on and seek to rehabilitate the work of French Marxist Anthropologists working in central Africa, above all Georges DuprĂ© and Pierre-Philippe Rey
    corecore