79 research outputs found

    Crystal Structure of 200 K-Superconducting Phase of Sulfur Hydride System

    Full text link
    This article reports the experimentally clarified crystal structure of a recently discovered sulfur hydride in high temperature superconducting phase which has the highest critical temperature Tc over 200 K which has been ever reported. For understanding the mechanism of the high superconductivity, the information of its crystal structure is very essential. Herein we have carried out the simultaneous measurements electrical resistance and synchrotron x-ray diffraction under high pressure, and clearly revealed that the hydrogen sulfide, H2S, decomposes to H3S and its crystal structure has body-centered cubic symmetry in the superconducting phase.Comment: 8 pages, 3 figure

    Pressure Destabilizes Oxygen Vacancies in Bridgmanite

    Get PDF
    Bridgmanite may contain a large proportion of ferric iron in its crystal structure in the forms of FeFeO3 and MgFeO2.5 components. We investigated the pressure dependence of FeFeO3 and MgFeO2.5 contents in bridgmanite coexisting with MgFe2O4-phase and with or without ferropericlase in the MgO-SiO2-Fe2O3 ternary system at 2,300 K, 33 and 40 GPa. Together with the experiments at 27 GPa reported in Fei et al. (2020, https://doi.org/10.1029/2019GL086296), our results show that the FeFeO3 and MgFeO2.5 contents in bridgmanite decrease from 7.6 to 5.3 mol % and from 2 to 3 mol % to nearly zero, respectively, with increasing pressure from 27 to 40 GPa. Accordingly, the total Fe3+ decreases from 0.18 to 0.11 pfu. The formation of oxygen vacancies (MgFeO2.5 component) in bridgmanite is therefore dramatically suppressed by pressure. Oxygen vacancies can be produced by ferric iron in Fe3+-rich bridgmanite under the topmost lower mantle conditions, but the concentration should decrease rapidly with increasing pressure. The variation of oxygen-vacancy content with depth may potentially affect the physical properties of bridgmanite and thus affect mantle dynamics

    Thermal Equation of State of Fe3C to 327 GPa and Carbon in the Core

    Get PDF
    The density and sound velocity structure of the Earth’s interior is modeled on seismological observations and is known as the preliminary reference Earth model (PREM). The density of the core is lower than that of pure Fe, which suggests that the Earth’s core contains light elements. Carbon is one plausible light element that may exist in the core. We determined the equation of state (EOS) of Fe3C based on in situ high-pressure and high-temperature X-ray diffraction experiments using a diamond anvil cell. We obtained the P–V data of Fe3C up to 327 GPa at 300 K and 70–180 GPa up to around 2300 K. The EOS of nonmagnetic (NM) Fe3C was expressed by two models using two different pressure scales and the third-order Birch–Murnaghan EOS at 300 K with the Mie–Grüneisen–Debye EOS under high-temperature conditions. The EOS can be expressed with parameters of V0 = 148.8(±1.0) Å3, K0 = 311.1(±17.1) GPa, K0′ = 3.40(±0.1), γ0 = 1.06(±0.42), and q = 1.92(±1.73), with a fixed value of θ0 = 314 K using the KBr pressure scale (Model 1), and V0 = 147.3(±1.0) Å3, K0 = 323.0(±16.6) GPa, K0′ = 3.43(±0.09), γ0 = 1.37(±0.33), and q = 0.98(±1.01), with a fixed value of θ0 = 314 K using the MgO pressure scale (Model 2). The density of Fe3C under inner core conditions (assuming P = 329 GPa and T = 5000 K) calculated from the EOS is compatible with the PREM inner core

    Unexpected Semi-Metallic BiS2 at High Pressure and High Temperature

    Get PDF
    In the last decade, the group V-VI compounds have been widely investigated due to their excellent properties and applications. It is now accepted that diverse stoichiometry can yield new compounds with unanticipated properties, uncovering potentially new physicochemical mechanisms. However, in this group, aside from the conventional A2B3-type, no other energetically stable stoichiometry has been reported yet. Here, we report that Bi2S3 is unstable and decomposes into stoichiometric BiS2 and BiS with different Bi valence states are favored upon compression. Encouragingly, we successfully synthesized the predicted BiS2 phase and thus, confirmed its existence. Our current calculations reveal that the found BiS2 phase is a semi-metal, associated with the increased concentration of nonmetallic S. The present results represent the first counterintuitive stable stoichiometry of group V-VI and provide a good example in designing and synthesizing new compounds under compression
    corecore