

Subscriber access provided by UNIV OF CAMBRIDGE

Surfaces, Interfaces, and Catalysis; Physical Properties of Nanomaterials and Materials

Unexpected Semi-Metallic BiS2 at High Pressure and High Temperature

Guangtao Liu, Zhenhai Yu, Hanyu Liu, Simon A.T. Redfern, Xiaolei Feng, Xin Li, Yuan Ye, Ke Yang, Naohisa Hirao, Saori I. Kawaguchi, Xiaodong Li, Lin Wang, and Yanming Ma

J. Phys. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acs.jpclett.8b02004 • Publication Date (Web): 25 Aug 2018 Downloaded from http://pubs.acs.org on September 3, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1		
2 3	1	Unexpected Semi-metallic RiS, at High Pressure and High Temperature
4 5	2	Unexpected Senn-metanic Disg at fingh Fressure and fingh Temperature
6 7	2	
8	4	Guangtao Liu ^{1, 2, 3} Zhenhai Yu ¹ Hanyu Liu ⁴ Simon A. T. Redfern ^{1, 5} Xiaolei Feng ^{3, 5} Xin Li ¹ Ye
9 10	5	Yuan ¹ , Ke Yang ⁶ , Naohisa Hirao ⁷ , Saori Imada Kawaguchi ⁷ , Xiaodong Li ⁸ , Lin Wang ^{1,*} and
12	6	Yanming Ma ^{3,9,*}
13 14	7	
15 16	8	
17 18	9	¹ Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
19 20	10	² National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China
21 22	11	Academy of Engineering Physics, Mianyang 621900, China
23 24	12	³ State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun
25 26	13	130012, China
27 28	14	⁴ Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
29 30	15	⁵ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ,
31	16	UK
32 33	17	⁶ Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201203, China
34 35	18	⁷ Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo
36 37	19	679-5198, Japan
38 39	20	⁸ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
40 41	21	⁹ International Center of Future Science, Jilin University, Changchun 130012, China
42 43	22	
44 45	23	
46	24	Corresponding authors: wanglin@hpstar.ac.cn (Prof. Lin Wang) and mym@jlu.edu.cn (Prof.
48	25	Yanming Ma)
49 50	26	
51		
52 53		
54		
55		
50 57		
58		1
59		
60		ACS Paragon Plus Environment

27 Abstract

In the last decade, the group V-VI compounds have been widely investigated due to their excellent properties and applications. It is now accepted that diverse stoichiometry can yield new compounds with unanticipated properties, uncovering potentially new physicochemical mechanisms. However, in this group, aside from the conventional A_2B_3 -type, no other energetically stable stoichiometry has been reported yet. Here, we report that Bi₂S₃ is unstable and decomposes into stoichiometric BiS₂ and BiS with different Bi valence states upon compression. Encouragingly, we successfully synthesized the predicted BiS₂ phase and thus, confirmed its existence. Our current calculations reveal that the found BiS_2 phase is a semi-metal, associated with the increased concentration of nonmetallic S. The present results represent the first counterintuitive stable stoichiometry of group V-VI and provide a good example in designing and synthesizing new compounds under compression.

41 Table of Contents

43 The calculated phase diagram and synthesized BiS_2 compound.

The group V-VI compounds, which are important both in practical applications and in fundamental science, have attracted significant research interest in recent years. The Bi₂Te₃ and Sb₂Te₃ alloys are by far the most widely used thermoelectric materials¹. Bi₂S₃ is a typical semiconductor with a direct bandgap of $\sim 1.3-1.9 \text{ eV}^{2,3}$ and is widely used in thermoelectric⁴, electronic⁵, and optoelectronic devices⁶. Bi₂Se₃, Bi₂Te₃, and Sb₂Te₃ were especially predicted to be the simplest 3-dimensional topological insulators⁷ and this was subsequently experimentally confirmed⁸. It is well-known that compression can significantly alter the properties of matter, driving increased density via largely changing atomic distance, bonding, and stacking symmetry. It may also induce charge transfer or alter the spin state of a material, and thus, drive phase transitions. High-pressure studies have been carried out to extensively tailor the properties of the group V-VI compounds. For instance, the thermoelectric properties of Bi₂Te₃ and Sb₂Te₃ can be significantly enhanced by high pressure^{9,10}. The superconductivity was observed between 3 and 6 GPa in $Bi_2Te_3^{11}$ and shows pressure-dependence, which has been correlated to its high-pressure phase transitions¹². Subsequently, it was reported that Bi₂Te₃ undergoes a series of structural phase transitions and finally forms a disordered cubic alloy^{13,14}. The similar high-pressure phase transitions have also been observed in Sb₂Te₃^{15,16} and Bi₂Se₃¹⁷⁻¹⁹. At ambient pressure, Bi₂S₃ crystallizes in an orthorhombic structure $(Pnma)^{20}$, in which Bi is irregularly coordinated by S in two distinct crystallographic sites, with irregular 7- and 8-fold coordination. High-pressure X-ray diffraction (XRD) studies found that Bi_2S_3 has a possible second-order isosymmetric transition around 4-6 GPa and retains *Pnma* symmetry up to 50 GPa²¹. Furthermore, a pressure-induced semiconductor-metal transition in Bi_2S_3 has been indicated under compression²².

The search for the new stoichiometry of a compound plays an important role in determining materials and even improving their properties. Many recent studies have proven that pressure is a very effective tool to synthesize new stoichiometric compounds that are generally inaccessible at ambient conditions $^{23-25}$. Thus, irreplaceable pressure enables us to explore more physical and chemical processes that illuminate our understanding of the nature of solids more generally. However, besides the well-known A₂B₃-type and some metastable phases, no other energetically stable stoichiometry has been reported in such a significant system thus far. Therefore, it is anticipated that the group V-VI compounds with different stoichiometries have further novel phenomena.

Here, we investigate the possibility that other, as yet unknown, stable compounds exist in the

group V-VI compounds. Initially, the Bi-S system was chosen to study as a general representative. Variable chemical compositions of Bi_xS_y have been explored using the crystal structure prediction method under high pressures. The enthalpy calculations indicate that Bi_2S_3 is thermodynamically unstable and tends to spontaneously decompose above 24 GPa into two new stoichiometric phases BiS₂ and BiS, which have abnormal valence states and are stable above 9 and 19 GPa, respectively. Using the diamond anvil cell (DAC) and laser heating techniques, our subsequent experiment confirmed the predicted BiS₂ phase, revealing an interesting semi-metallic behavior.

The formation enthalpy of each stoichiometric Bi_xS_v is defined as $H_{f/atom} = \frac{H_{Bi_x S_y/f.u.-x H_{Bi/atom}-y H_{s/atom}}}{x+y}$, where the *R*-3*m* and *Im*-3*m* phases²⁶ were used for Bi, and the *Fddd*, $P3_221$ and $I4_1/acd$ phases²⁷ were employed for S as the endpoint compositions at corresponding pressures. To validate our computational scheme for the Bi-S system, we successfully reproduced the known orthorhombic phase of Bi₂S₃ at both atmospheric pressure and 10 GPa using the crystal structure prediction method^{28,29}, as well as its equation of state (EOS), verifying the reliability of the methodology. We then extended our structure searches to consider other stoichiometries. The enthalpic convex hulls, showing enthalpies as function of pressure, are summarized in Figure 1, where the points on the convex extrema are energetically stable stoichiometries. At ambient pressure, we found that only Bi₂S₃ exists (Fig. 1a), in agreement with the actual observation and thus, confirming the reliability of our computational scheme. It can be seen that the stability of Bi_xS_y changes at elevated pressures (Figs. 1b and 1c). As anticipated, not only Bi₂S₃, but also new stoichiometric BiS₂ and BiS become energetically stable above 9 and 19 GPa, respectively (Fig. 1d). More unexpectedly, it is apparent that conventional Bi_2S_3 is energetically unstable above 24 GPa and tends to decompose.

Fig. 1: Ground-state and static enthalpy of the formation per atom of $Bi_{1-x}S_x$ structures with respect to their end-member compositions; the sulfur molar content (x = 0 corresponds to pure Bi; x = 1 to pure S) for the ground state and P = (a) 0, (b) 20, and (c) 40 GPa. The symbols on the solid lines denote that the compounds that we have identified to be stable at the corresponding pressures, while those on the dashed lines represent those that are unstable with respect to decomposition into elements and other stable compounds. (d) The stable stoichiometries and their stable range of pressure.

To confirm the dynamical stabilities of the predicted phases, we also calculated the phonon dispersions of BiS and BiS₂. No imaginary phonon frequency was found across the Brillouin zone (BZ), confirming the dynamic stability of BiS (Fig. S1a). In addition, the phonon calculations reveal that the found P2/m structure (BiS₂) through the modulation of a soft phonon mode (Fig. S1b) is dynamically stable (Fig. S1c). On the other hand, *ab initio* molecular dynamics simulations also show that this structure experiences no additional structural change upon relaxation, since there is no energy shift in a total 10 ps simulation. (Fig. S2) Therefore, we conclude that the modulated P2/m 114 structure is the ground-state structure of BiS_2 phase under high pressure.

The stable crystal structures of each stoichiometry within the Bi-S binary at 20 GPa are shown in Figure 2. The familiar Bi₂S₃ phase is composed of stacked irregular BiS_{7/8} co-ordination polyhedra (Fig. 2a). The simple cubic (sc) BiS (Pm-3m) phase, on the other hand, comprises stacked regular BiS₈ hexahedra (Fig. 2b). Finally, a monoclinic BiS₂ phase is formed by BiS₉ triskaidecahedra, and described layer-liked with be structure stacking can as а а sequenceS-Bi-S-S-Bi-S-Bi-S-Bi-S-··· along the b-axis (Fig. 2c).

Fig. 2: The schematic crystal structures of (a) Bi_2S_3 (*Pnma*), (b) BiS (*Pm-3m*), and (c) BiS_2 (*Cmca*) at 20 GPa. Large purple and small yellow spheres represent the Bi and S atoms, respectively. The S-S bond is indicated within the blue ellipses.

In order to confirm the theoretically predicted stoichiometries given by our *ab initio* computational results, further high-pressure experiments were performed to synthesize samples across the Bi-S composition range. The structure search results indicate that Bi₂S₃ should decompose, and layered BiS₂ can be synthesized more easily under compression since it has relatively low enthalpy in the convex hull (Fig. 1). Thus, we tried to obtain BiS₂ at extreme conditions along these two designed pathways: (i) $Bi_2S_3 \rightarrow \frac{1}{2}Bi + \frac{3}{2}BiS_2$ and (ii) $Bi + 2S \rightarrow BiS_2$. In the first run, the starting material was a well-characterized sample of Bi2S3, which was checked carefully before heating to confirm the absence of any Bi impurity (Fig. S3). The sample was compressed to 38 GPa and heated up to about 2000 K for 30 minutes. The pressure was then decreased to 31.5 GPa after

Page 7 of 17

laser heating. The quenched sample was scanned by an X-ray beam to investigate any heterogeneity caused by the temperature gradient of laser heating. XRD mapping results showed that many new grains had formed with a typical length scale of several µm. We note that the experimental intensities of the XRD patterns were dominated by obvious texture and pseudo-single crystal statistics after the experiments, which had provoked rather coarse recrystallization from high temperature. However, clear diffraction peaks of a body centered cubic (bcc) structure were observed in certain parts of the sample, which were identified as the high-pressure phase of Bi. In addition to Bi, at least two additional phases existed. Using the results of our computations we were able to test these structures against our predictions, and conclude that the original Bi_2S_3 sample may have decomposed into a mixture of Bi and BiS₂. Apart from a few unidentified peaks, most of the diffraction patterns at 31.5 GPa can be attributed to a mixture of BiS_2 and Bi, (Fig. 3a). The residual unidentified peaks may be from an additional metastable phase(s) that have yet to be identified or are possibly explained by other stoichiometry beyond our current calculations. For the second run, we heated a mixture of elemental Bi and S at 39 GPa to synthesize BiS₂. We successfully synthesized the BiS₂ phase again and obtained correspondingly high quality diffraction data (Fig. S4). The representative plots with the calculated versus experimental diffraction profiles (Fig. 3b), as well as the refinement (Fig. 3c), clearly demonstrate the presence of BiS₂.

Fig. 3: The experimental XRD pattern and the calculated diffraction peaks of BiS_2 , Bi and MgO at (**a**) 31.5 and (**b**) 39 GPa. The unidentified diffraction peaks with question marks are from undefined phases. (**c**) The diffraction refinement at 39 GPa. The black open circles and red solid line represent the Rietveld fits and observed data, respectively. (**d**) The red and blue points represent our experimental volumes of Bi and BiS_2 as function of pressure compared with our calculated EOSs. The black solid line is the previous EOS of Bi from the reference³¹. The inset shows the compressed sample in the DAC.

The calculated and fitted experimental third order Birch–Murnaghan $EOSs^{30}$ of Bi and BiS₂ are plotted in Figure 3d. Our experimental data of Bi are well consistent with the previous reference³¹. Since general gradient approximation normally overestimates the lattice parameters, it is reasonable that our calculated volumes are slightly larger than the experimental values. We found that the reported BiS₂ phase is denser and more incompressible than the familiar phase of Bi₂S₃, as indicated by comparing their EOSs and bulk moduli (Fig. S5). Typically, compression results in crystalline

Page 9 of 17

materials becoming denser and tending towards close-packed arrangements at high pressure, with a concomitant increase in the coordination number of the atoms or ions. Our results show that, in these Bi-S compounds, the coordination of Bi by S increases from 7 or 8 (Bi₂S₃) to 9 (BiS₂). However, this increase in coordination number results in an increase in the average bond length, despite the increase in pressure. For example, at 20 GPa the inter-atomic distance of the Bi-S bond changes from 2.68-2.75 Å in Bi₂S₃ to 2.75-2.96 Å in BiS₂. This can be understood in terms of the increased repulsive interactions between nearest neighbor atoms arising from the increase in the number of coordinating S atoms. Interestingly, we observed that covalent S-S bonds exist in BiS₂, as seen in Figure 2c, with a bond length of 2.04 Å which is exceedingly close to the value (2.08 Å) for the S-S covalent bond seen in the chain-structure of elemental S-II (P3₂21) at 20 GPa. Our additional electron localized function calculation confirms that the adjacent S atoms show a typical covalent bond character (Fig. S6), which has not been observed in other metal sulfides before.

Since it is difficult to obtain pure phases from DAC synthesis, electronic properties were investigated using first principles calculations. Because DFT usually underestimates the bandgap of materials, we employed the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06)³² to better describe its band structure and density of states (DOS). In BiS (Fig. 4a), the valence bands and conduction bands completely overlap indicating a metallic state with superconductivity (Fig. S7). The valence band of BiS_2 is occupied by S_3p (Fig. 4b). It can be seen that there is slight overlap along the Γ -Y direction and that the DOS is near zero at the Fermi level, indicating that BiS₂ is an interesting semi-metallic phase. And this semi-metallic state remains under higher pressure (40 GPa), which is different from the normal metallic behavior of group V-VI compounds under compression. The diverse electronic properties can be understood intuitively in terms of the different concentrations of nonmetallic S in these phases, which can lead to an increase in valence electron transfer from Bi to S in BiS₂.

Fig. 4: Band structures along high symmetry paths and the projected DOSs of (a) BiS and (b) BiS₂ at
20 GPa. The Fermi level has been set to 0 eV.

High-pressure and high-temperature techniques are particularly valuable in the search for such structural variability. We note that the ambient Bi₂S₃ phase was robust at room temperature and high pressure²¹, and only BiS₂ was synthesized in our experiments. Its synthesis pressure was higher than that suggested by the structure prediction calculations. The hysteresis of chemical reaction may be a result of the activation energies associated with experimental synthesis methods and the unclear pathway (during synthesis) across the potential energy surface in this system, which often occurs in many other experimental cases. The new structure should not only be thermodynamically and dynamically stable, but also the energy barrier needs to be overcome in the actual experiment. Thus, plenty of anticipated materials can be obtained only at extreme conditions. Since BiS becomes energetically favored at higher pressure, we reasonably conjecture that stoichiometric BiS can also

be synthesized, once the barrier is overcome at higher pressure (compared with the theoretical one) or temperature. Our work on the Bi-S system encourages us to believe that, as well as the well-known A₂B₃-structure type, other undiscovered phases with interesting and potentially useful properties should exist among the group V-VI compounds, which can be engineered or controlled by tuning these compositions under compression and have been confirmed by our primary calculations (Fig. S8). It should be noted that variations of stoichiometry need to be carefully considered in high-pressure calculations and experimental studies, which can significantly enrich materials with undetected properties and potential applications.

In summary, we carried out systematic simulations on compounds that exist across the Bi-S binary system using a crystal structure prediction approach under high pressure. Two new stoichiometric BiS₂ and BiS compounds were predicted to be stable above ~9 and 19 GPa, respectively, whereas conventional Bi₂S₃ was found to decompose above 24 GPa, as we have verified through synchrotron XRD experiments in a laser-heated DAC. 8-fold coordinated sc BiS and layered 9-fold coordinated BiS₂ are more densely packed compared with 7/8-fold coordinated Bi₂S₃. Other than +3, Bi shows a rich variety of valence states under compression. Electronic structure calculations indicate that the newly-uncovered BiS₂ phase shows interesting semi-metallic behavior. The present results demonstrate that, as well as the familiar A_2B_3 -type compound, other unexpected stoichiometries are stable in group V-VI at high pressure. High-pressure studies can provide new insights into the design, exploration, and ultimately synthesis of novel materials with unusual chemistry and potentially useful properties.

228 Methods

The crystal structures of Bi-S compounds were systematically probed using the Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code^{28,29}. This method has been applied successfully to a wide range of crystalline systems ranging from elemental solids to binary and ternary pounds³³⁻³⁶. The simulation cell comprised 1-8 f.u. (equivalent to 24 atoms) with 6 stoichiometries (Bi₂S, BiS, Bi₂S₃, BiS₂, Bi₂S₅, and BiS₃) at 0, 10, 30, and 60 GPa. DFT calculations, including structural optimizations, enthalpies, electronic structures and phonons, were performed with Vienna Ab initio Simulation Package (VASP)³⁷ code using the Perdew-Burke-Ernzerhof³⁸ exchange-correlation functional. The $6s^26p^3$ and $3s^23p^4$ electrons were treated as valence electrons for Bi and S, respectively. To ensure that all enthalpy calculations were well converged to about 1 meV/atom, a Monkhorst-Pack grid was selected with sufficient density $(2\pi \times 0.02 \text{ Å}^{-1})$ in reciprocal space, as well as an appropriate energy cutoff (350 eV). The phonon calculations and modulations of the soft phonon modes were carried out using a finite displacement approach³⁹ through the PHONOPY code⁴⁰.

High-pressure/high-temperature synthesis experiments were carried out using a laser-heated symmetric DAC with culets diameter of 300 µm. Bi₂S₃ powder (Alfa Aesar, 99.9%) in the first run and mixed Bi/S (Alfa Aesar, 99.99%/99.5%) in the second run were prepressed into thin sheets (~10 μm) and then loaded between two layers of MgO to form a sandwich structure, where MgO was used as both the thermal insulator and pressure medium. Pressures were determined by the ruby fluorescence method⁴¹. An ytterbium fiber laser (1064 nm excitation line) with a beam size of \sim 50 µm was used to heat the sample from both sides. The laser installed in BL10XU is SPI fiber laser with 1050 nm. Temperatures were measured by fitting the visible portion of the black-body radiation from the heating spot on the sample to the Planck radiation function.

In situ high-pressure angle-dispersive XRD experiments at room temperature were performed principally at beamline 15U1 (0.6199 Å) of the Shanghai Synchrotron Radiation Facility and beamline 10XU (0.4136 Å) of SPring8. Some additional experiments were conducted at the 4W2 High Pressure Station of the Beijing Synchrotron Radiation Facility. The sample to detector distance and other geometric parameters were calibrated using a CeO₂ standard. The software package Dioptas⁴² was used to integrate powder diffraction rings and convert the 2-dimensional data to 1-dimensional profiles. The resulting diffraction patterns were refined via Rietveld refinement using

1		
2 3	258	the GSAS package ⁴³ .
4 5	259	
6 7	260	Acknowledgments
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	261	The authors acknowledge the supports of the National Science Associated Funding under Grant
	262	No. U1530402 and the National Natural Science Foundation of China under Grant No. 11604314.
	263	The authors would like to thank the Shanghai Synchrotron Radiation Facility and SPring8 for use of
	264	their synchrotron radiation facilities. This work was performed under proposal No. 2017B1059 of the
	265	SPring-8.
	266	
	267	Supporting Information
	268	The Supporting Information is available XXX.
	269	Phonon dispersion curves, MD simulation, Diffraction patterns, EOS, ELF, Electron phonon
	270	coupling calculation and details of the crystal structures.
20	271	
28 29		
30 31		
32 33		
34		
35 36		
37		
39		
40 41		
42		
43 44		
45		
46 47		
48		
49 50		
51		
52		
55 54		
55		
56 57		
58		13
59 60		ACS Paragon Plus Environment
00		

1 2	
3	272
4 5	273
6 7	274
8 9	275
10 11	276
12 13	277
14 15	278
15 16	279
17	280
19 20	281
21 22	282
23 24	283
25 26	284
27	285
20 29	286
30 31	287
32 33	288
34 35	289
36 37	290
38	291
40	292
41 42	293
43 44	294
45 46	295
47 48	296
49 50	297
50 51 52	298
53	299
54 55	300
56 57	301
58 59	
60	

References

273		
274	(1)	Snyder, G. J.; Toberer, E. S. Complex Thermoelectric Materials. Nat. Mater. 2008, 7, 105-
275		114.
276	(2)	Sharma, Y.; Srivastava, P.; Dashora, A.; Vadkhiya, L.; Bhayani, M. K.; Jain, R.; Jani, A. R.;
277		Ahuja, B. L. Electronic Structure, Optical Properties and Compton Profiles of Bi_2S_3 and
278		Bi ₂ Se ₃ . <i>Solid State Sci.</i> 2012 , <i>14</i> (2), 241–249.
279	(3)	Filip, M. R.; Patrick, C. E.; Giustino, F. GW Quasiparticle Band Structures of Stibnite,
280		Antimonselite, Bismuthinite, and Guanajuatite. Phys. Rev. B 2013, 87 (20), 205125.
281	(4)	Du, X.; Cai, F.; Wang, X. Enhanced Thermoelectric Performance of Chloride Doped Bismuth
282		Sulfide Prepared by Mechanical Alloying and Spark Plasma Sintering. J. Alloys Compd. 2014,
283		587, 6–9.
284	(5)	Huang, X.; Yang, Y.; Dou, X.; Zhu, Y.; Li, G. In Situ Synthesis of Bi/Bi2S3 Heteronanowires
285		with Nonlinear Electrical Transport. J. Alloys Compd. 2008, 461 (1-2), 427-431.
286	(6)	Wang, Y.; Chen, J.; Jiang, L.; Sun, K.; Liu, F.; Lai, Y. Photoelectrochemical Properties of
287		Bi2S3 Thin Films Deposited by Successive Ionic Layer Adsorption and Reaction (SILAR)
288		Method. J. Alloys Compd. 2016, 686, 684-692.
289	(7)	Zhang, H.; Liu, CX.; Qi, XL.; Dai, X.; Fang, Z.; Zhang, SC. Topological Insulators in
290		Bi ₂ Se ₃ , Bi ₂ Te ₃ and Sb2Te3 with a Single Dirac Cone on the Surface. Nat. Phys. 2009, 5 (6),
291		438–442.
292	(8)	Chen, Y. L.; Analytis, J. G.; Chu, JH.; Liu, Z. K.; Mo, SK.; Qi, X. L.; Zhang, H. J.; Lu, D.
293		H.; Dai, X.; Fang, Z.; et al. Experimental Realization of a Three-Dimensional Topological
294		Insulator, Bi ₂ Te ₃ . Science. 2009, 325 (5937), 178–181.
295	(9)	Ovsyannikov, S. V.; Shchennikov, V. V. High-Pressure Routes in the Thermoelectricity or
296		How One Can Improve a Performance of Thermoelectrics. Chem. Mater. 2010, 22 (3), 635-
297		647.
298	(10)	Ovsyannikov, S. V.; Shchennikov, V. V.; Vorontsov, G. V.; Manakov, A. Y.; Likhacheva, A.
299		Y.; Kulbachinskii, V. A. Giant Improvement of Thermoelectric Power Factor of Bi ₂ Te ₃ under
300		Pressure. J. Appl. Phys. 2008, 104 (5), 053713.
301	(11)	Zhang, J. L.; Zhang, S. J.; Weng, H. M.; Zhang, W.; Yang, L. X.; Liu, Q. Q.; Feng, S. M.;

1 2			
3 4 5	302		Wang, X. C.; Yu, R. C.; Cao, L. Z.; et al. Pressure-Induced Superconductivity in Topological
	303		Parent Compound Bi ₂ Te ₃ . Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 24–28.
6 7	304	(12)	Zhang, C.; Sun, L.; Chen, Z.; Zhou, X.; Wu, Q.; Yi, W.; Guo, J.; Dong, X.; Zhao, Z. Phase
8 9 10 11	305		Diagram of a Pressure-Induced Superconducting State and Its Relation to the Hall Coefficient
	306		of Bi ₂ Te ₃ Single Crystals. <i>Phys. Rev. B</i> 2011, 83 (14), 140504.
12 13	307	(13)	Zhu, L.; Wang, H.; Wang, Y.; Lv, J.; Ma, Y.; Cui, Q.; Ma, Y.; Zou, G. Substitutional Alloy of
14 15 16 17	308		Bi and Te at High Pressure. Phys. Rev. Lett. 2011, 106, 145501.
	309	(14)	Einaga, M.; Ohmura, A.; Nakayama, A.; Ishikawa, F.; Yamada, Y.; Nakano, S.
18	310		Pressure-Induced Phase Transition of Bi ₂ Te ₃ into the Bcc Structure. <i>Phys. Rev. B</i> 2011, <i>83</i> (9),
19 20 21	311		092102.
21 22	312	(15)	Zhao, J.; Liu, H.; Ehm, L.; Chen, Z.; Sinogeikin, S.; Zhao, Y.; Gu, G. Pressure-Induced
23 24 25 26	313		Disordered Substitution Alloy in Sb ₂ Te ₃ . Inorg. Chem. 2011, 50, 11291–11293.
	314	(16)	Ma, Y.; Liu, G.; Zhu, P.; Wang, H.; Wang, X.; Cui, Q.; Liu, J.; Ma, Y. Determinations of the
27	315		High-Pressure Crystal Structures of Sb ₂ Te ₃ . J. Phys. Condens. Matter 2012, 24, 475403.
28 29	316	(17)	Vilaplana, R.; Santamaría-Pérez, D.; Gomis, O.; Manjón, F. J.; González, J.; Segura, A.;
30 31	317		Muñoz, A.; Rodríguez-Hernández, P.; Pérez-González, E.; Marín-Borrás, V.; et al. Structural
32 33	318		and Vibrational Study of Bi ₂ Se ₃ under High Pressure. Phys. Rev. B 2011, 84 (18), 184110.
34 35	319	(18)	Liu, G.; Zhu, L.; Ma, Y.; Lin, C.; Liu, J.; Ma, Y. Stabilization of 9/10-Fold Structure in
36 37	320		Bismuth Selenide at High Pressures. J. Phys. Chem. C 2013, 117 (19), 10045–10050.
38	321	(19)	Yu, Z.; Wang, L.; Hu, Q.; Zhao, J.; Yan, S.; Yang, K.; Sinogeikin, S.; Gu, G.; Mao, H.
40	322		Structural Phase Transitions in Bi ₂ Se ₃ under High Pressure. Sci. Rep. 2015, 5 (1), 15939.
41 42	323	(20)	Kyono, A.; Kimata, M. Structural Variations Induced by Difference of the Inert Pair Effect in
43 44	324		the Stibnite-Bismuthinite Solid Solution Series (Sb,Bi) ₂ S ₃ . Am. Mineral. 2004, 89 (7), 932-
45 46	325		940.
47 48	326	(21)	Efthimiopoulos, I.; Kemichick, J.; Zhou, X.; Khare, S. V; Ikuta, D.; Wang, Y. High-Pressure
49	327		Studies of Bi ₂ S ₃ . J. Phys. Chem. A 2014, 118, 1713.
51	328	(22)	Li, C.; Zhao, J.; Hu, Q.; Liu, Z.; Yu, Z.; Yan, H. Crystal Structure and Transporting Properties
52 53	329		of Bi ₂ S ₃ under High Pressure: Experimental and Theoretical Studies. J. Alloys Compd. 2016,
54 55	330		688, 329–335.
56 57	331	(23)	Zhang, W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boulfelfel, S. E.; Lyakhov, A. O.;
58 59			15
60			ACS Paragon Plus Environment

3 1	332		Stavrou, E.; Somayazulu, M.; Prakapenka, V. B.; Konopkova, Z. Unexpected Stable
5	333		Stoichiometries of Sodium Chlorides. Science. 2013, 342, 1502–1505.
7	334	(24)	Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I. Conventional
8 9	335		Superconductivity at 203 Kelvin at High Pressures in the Sulfur Hydride System. Nature 2015,
10 11	336		525, 73–76.
12 13	337	(25)	Hu, Q.; Kim, D. Y.; Yang, W.; Yang, L.; Meng, Y.; Zhang, L.; Mao, H. K. FeO ₂ and FeOOH
14 15	338		under Deep Lower-Mantle Conditions and Earth's Oxygen-Hydrogen Cycles. Nature 2016,
15 16	339		534 (7606), 241–244.
17 18	340	(26)	Aoki, K.; Fujiwara, S.; Kusakabe, M. Stability of the Bcc Structure of Bismuth at High
19 20	341		Pressure. Journal of the Physical Society of Japan. 1982, pp 3826–3830.
21 22	342	(27)	Degtyareva, O.; Gregoryanz, E.; Mao, HK.; Hemley, R. J. Crystal Structure of Sulfur and
23 24	343		Selenium at Pressures up to 160 GPa. High Press. Res. 2005, 25 (1), 17-33.
25	344	(28)	Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Crystal Structure Prediction via Particle-Swarm
20	345		Optimization. Phys. Rev. B 2010, 82 (9), 094116.
28 29	346	(29)	Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A Method for Crystal Structure Prediction.
30 31	347		Comput. Phys. Commun. 2012, 183 (10), 2063–2070.
32 33	348	(30)	Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809-824.
34 35	349	(31)	Y. Akahama, M. Kobayashi, and H. Kawamura, Proceeding of 31st High Pressure Conference
36 27	350		of Japan, Osaka, Japan, 1990, Pp. 392–393.
38	351	(32)	Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb
39 40	352		Potential. J. Chem. Phys. 2003, 118 (18), 8207-8215.
41 42	353	(33)	Lv, J.; Wang, Y.; Zhu, L.; Ma, Y. Predicted Novel High-Pressure Phases of Lithium. Phys.
43 44	354		<i>Rev. Lett.</i> 2011 , <i>106</i> , 015503.
45 46	355	(34)	Liu, G.; Besedin, S.; Irodova, A.; Liu, H.; Gao, G.; Eremets, M.; Wang, X.; Ma, Y. Nb-H
47	356		System at High Pressures and Temperatures. Phys. Rev. B 2017, 95 (10), 104110.
48 49	357	(35)	Zhang, M.; Liu, H.; Li, Q.; Gao, B.; Wang, Y.; Li, H.; Chen, C.; Ma, Y. Superhard BC3 in
50 51	358		Cubic Diamond Structure. Phys. Rev. Lett. 2015, 114, 015502.
52 53	359	(36)	Li, Y.; Hao, J.; Liu, H.; Lu, S.; Tse, J. S. High-Energy Density and Superhard Nitrogen-Rich
54 55	360		B-N Compounds. Phys. Rev. Lett. 2015, 115, 105502.
56 57	361	(37)	Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations
58			16
59 60			ACS Paragon Plus Environment

1			
3	362		Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186.
5	363	(38)	PERDEW J, BURKE K, E. M. Generalized Gradient Approximation Made Simple. Phys. Rev.
0 7	364		Lett. 1996, 77, 3865–3868.
8 9	365	(39)	Parlinski, K.; Li, Z. Q.; Kawazoe, Y. First-Principles Determination of the Soft Mode in Cubic
10 11	366		ZrO ₂ . Phys. Rev. Lett. 1997, 78 (21), 4063–4066.
12 13	367	(40)	Togo, A.; Oba, F.; Tanaka, I. First-Principles Calculations of the Ferroelastic Transition
14	368		between Rutile-Type and CaCl2-Type SiO ₂ at High Pressures. Phys. Rev. B 2008, 78 (13),
16	369		134106.
17 18	370	(41)	Mao, H. K.; Xu, J.; Bell, P. M. Calibration of the Ruby Pressure Gauge to 800 Kbar under
19 20	371		Quasi-Hydrostatic Conditions. J. Geophys. Res. 1986, 91 (B5), 4673.
21 22	372	(42)	Prescher, C.; Prakapenka, V. B. DIOPTAS: A Program for Reduction of Two-Dimensional
23	373		X-Ray Diffraction Data and Data Exploration. High Press. Res. 2015, 35 (3), 223–230.
25	374	(43)	Toby, B. H. A Graphical User Interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–221.
26 27	375		
28 29			
30 31			
32			
33 34			
35 36			
30 37			
38 39			
40			
41 42			
42			
44			
45 46			
47			
48 40			
49 50			
51			
52			
53 54			
55			
56			
57 58			
59			17