144 research outputs found

    Gene dysregulation in acute HIV-1 infection – early transcriptomic analysis reveals the crucial biological functions affected

    Get PDF
    IntroductionTranscriptomic analyses from early human immunodeficiency virus (HIV) infection have the potential to reveal how HIV causes widespread and lasting damage to biological functions, especially in the immune system. Previous studies have been limited by difficulties in obtaining early specimens.MethodsA hospital symptom-based screening approach was applied in a rural Mozambican setting to enrol patients with suspected acute HIV infection (Fiebig stage I-IV). Blood samples were collected from all those recruited, so that acute cases and contemporaneously recruited, uninfected controls were included. PBMC were isolated and sequenced using RNA-seq. Sample cellular composition was estimated from gene expression data. Differential gene expression analysis was completed, and correlations were determined between viral load and differential gene expression. Biological implications were examined using Cytoscape, gene set enrichment analysis, and enrichment mapping.ResultsTwenty-nine HIV infected subjects one month from presentation and 46 uninfected controls were included in this study. Subjects with acute HIV infection demonstrated profound gene dysregulation, with 6131 (almost 13% of the genome mapped in this study) significantly differentially expressed. Viral load was correlated with 1.6% of dysregulated genes, in particular, highly upregulated genes involved in key cell cycle functions, were correlated with viremia. The most profoundly upregulated biological functions related to cell cycle regulation, in particular, CDCA7 may drive aberrant cell division, promoted by overexpressed E2F family proteins. Also upregulated were DNA repair and replication, microtubule and spindle organization, and immune activation and response. The interferome of acute HIV was characterized by broad activation of interferon-stimulated genes with antiviral functions, most notably IFI27 and OTOF. BCL2 downregulation alongside upregulation of several apoptotic trigger genes and downstream effectors may contribute to cycle arrest and apoptosis. Transmembrane protein 155 (TMEM155) was consistently highly overexpressed during acute infection, with roles hitherto unknown.DiscussionOur study contributes to a better understanding of the mechanisms of early HIV-induced immune damage. These findings have the potential to lead to new earlier interventions that improve outcomes

    Quality of care in a differentiated HIV service delivery intervention in Tanzania: a mixed-methods study

    Get PDF
    Background: Differentiated service delivery (DSD) offers benefits to people living with HIV (improved access, peer support), and the health system (clinic decongestion, efficient service delivery). ART clubs, 15–30 clients who usually meet within the community, are one of the most common DSD options. However, evidence about the quality of care (QoC) delivered in ART clubs is still limited.Materials and methods: We conducted a concurrent triangulation mixed-methods study as part of the Test & Treat project in northwest Tanzania. We surveyed QoC among stable clients and health care workers (HCW) comparing between clinics and clubs. Using a Donabedian framework we structured the analysis into three levels of assessment: structure (staff, equipment, supplies, venue), processes (time-spent, screenings, information, HCW-attitude), and outcomes (viral load, CD4 count, retention, self-worth).Results: We surveyed 629 clients (40% in club) and conducted eight focus group discussions, while 24 HCW (25% in club) were surveyed and 22 individual interviews were conducted. Quantitative results revealed that in terms of structure, clubs fared better than clinics except for perceived adequacy of service delivery venue (94.4% vs 50.0%, p = 0.013). For processes, time spent receiving care was significantly more in clinics than clubs (119.9 vs 49.9 minutes). Regarding outcomes, retention was higher in the clubs (97.6% vs 100%), while the proportion of clients with recent viral load Conclusion: We found better structure and process of care in clubs than clinics with comparable outcomes. While QoC was perceived similarly in clinics and clubs, its meaning was understood differently between clients. DSD catered to the individual needs of clients, either technical care in the clinic or proximate and social care in the club. Our findings highlight that both clinic and DSD care are required as many elements of QoC were individually perceived.Erasmus Mundus Joint Doctorate Trans Global Health Programme EMJD-TGH (Framework Partnership Agreement 2013-0039, Specific Grant Agreement 2014-0681)Global Challenges (FGGA

    Tumor Cell Marker PVRL4 (Nectin 4) Is an Epithelial Cell Receptor for Measles Virus

    Get PDF
    Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections

    Vaccines and therapeutics for immunocompromised patients with COVID-19

    Get PDF
    The COVID-19 pandemic has disproportionately impacted immunocompromised patients. This diverse group is at increased risk for impaired vaccine responses, progression to severe disease, prolonged hospitalizations and deaths. At particular risk are people with deficiencies in lymphocyte number or function such as transplant recipients and those with hematologic malignancies. Such patients’ immune responses to vaccination and infection are frequently impaired leaving them more vulnerable to prolonged high viral loads and severe complications of COVID-19. Those in turn, have implications for disease progression and persistence, development of immune escape variants and transmission of infection. Data to guide vaccination and treatment approaches in immunocompromised people are generally lacking and extrapolated from other populations. The large clinical trials leading to authorisation and approval of SARS-CoV-2 vaccines and therapeutics included very few immunocompromised participants. While experience is accumulating, studies focused on the special circumstances of immunocompromised patients are needed to inform prevention and treatment approaches

    Human Cytomegalovirus Impairs the Function of Plasmacytoid Dendritic Cells in Lymphoid Organs

    Get PDF
    Human dendritic cells (DCs) are the main antigen presenting cells (APC) and can be divided into two main populations, myeloid and plasmacytoid DCs (pDCs), the latter being the main producers of Type I Interferon. The vast majority of pDCs can be found in lymphoid organs, where the main pool of all immune cells is located, but a minority of pDCs also circulate in peripheral blood. Human cytomegalovirus (HCMV) employs multiple mechanisms to evade the immune system. In this study, we could show that pDCs obtained from lymphoid organs (tonsils) (tpDCs) and from blood (bpDCs) are different subpopulations in humans. Interestingly, these populations react in opposite manner to HCMV-infection. TpDCs were fully permissive for HCMV. Their IFN-α production and the expression of costimulatory and adhesion molecules were altered after infection. In contrast, in bpDCs HCMV replication was abrogated and the cells were activated with increased IFN-α production and upregulation of MHC class I, costimulatory, and adhesion molecules. HCMV-infection of both, tpDCs and bpDCs, led to a decreased T cell stimulation, probably mediated through a soluble factor produced by HCMV-infected pDCs. We propose that the HCMV-mediated impairment of tpDCs is a newly discovered mechanism selectively targeting the host's major population of pDCs residing in lymphoid organs

    Procalcitonin and C-Reactive Protein for Invasive Bacterial Pneumonia Diagnosis among Children in Mozambique, a Malaria-Endemic Area

    Get PDF
    Background: Pneumonia is the major cause of mortality and morbidity in children worldwide. Procalcitonin (PCT) and C-reactive protein (CRP) are used in developed countries to differentiate between viral and bacterial causes of pneumonia. Validity of these markers needs to be further explored in Africa. Methodology and Principal Findings: We assessed the utility of PCT and CRP to differentiate viral from invasive bacterial pneumonia in children <5 years hospitalized with clinical severe pneumonia (CSP) in rural Mozambique, a malaria-endemic area with high HIV prevalence. Prognostic capacity of these markers was also evaluated. Out of 835 children with CSP, 87 fulfilled definition of viral pneumonia and 89 of invasive bacterial pneumonia. In absence of malaria parasites, levels of PCT and CRP were lower in the viral group when compared to the invasive bacterial one (PCT: median = 0.21 versus 8.31 ng/ml, p<0.001; CRP: 18.3 vs. 185.35 mg/l, p<0.001). However, in presence of malaria parasites distribution between clinical groups overlapped (PCT: median = 23.1 vs. 21.75 ng/ml, p = 0.825; CRP: median = 96.8 vs. 217.4 mg/l, p = 0.052). None of the two markers could predict mortality. Conclusions: Presence of malaria parasites should be taken into consideration, either for clinical or epidemiological purposes, if using PCT or CRP to differentiate viral from invasive bacterial pneumonia in malaria-endemic areas

    Epidemiology, Molecular Characterization and Antibiotic Resistance of Neisseria meningitidis from Patients ≤15 Years in Manhiça, Rural Mozambique

    Get PDF
    BACKGROUND: The epidemiology of meningococcal disease in Mozambique and other African countries located outside the "meningitis belt" remains widely unknown. With the event of upcoming vaccines microbiological and epidemiological information is urgently needed. METHODS: Prospective surveillance for invasive bacterial infections was conducted at the Manhiça District hospital (rural Mozambique) among hospitalized children below 15 years of age. Available Neisseria meningitidis isolates were serogrouped and characterized by Multilocus Sequence Typing (MLST). Antibiotic resistance was also determined. RESULTS: Between 1998 and 2008, sixty-three cases of confirmed meningococcal disease (36 meningitis, 26 sepsis and 1 conjunctivitis) were identified among hospitalized children. The average incidence rate of meningococcal disease was 11.6/100,000 (8/100,000 for meningitis and 3.7/100,000 for meningococcemia, respectively). There was a significant rise on the number of meningococcal disease cases in 2005-2006 that was sustained till the end of the surveillance period. Serogroup was determined for 43 of the 63 meningococcal disease cases: 38 serogroup W-135, 3 serogroup A and 2 serogroup Y. ST-11 was the most predominant sequence type and strongly associated with serogroup W-135. Two of the three serogroup A isolates were ST-1, and both serogroup Y isolates were ST-175. N. meningitidis remained highly susceptible to all antibiotics used for treatment in the country, although the presence of isolates presenting intermediate resistance to penicillin advocates for continued surveillance. CONCLUSIONS: Our data show a high rate of meningococcal disease in Manhiça, Mozambique, mainly caused by serogroup W-135 ST-11 strains, and advocates for the implementation of a vaccination strategy covering serogroup W-135 meningococci in the country

    Structure of the Extracellular Portion of CD46 Provides Insights into Its Interactions with Complement Proteins and Pathogens

    Get PDF
    The human membrane cofactor protein (MCP, CD46) is a central component of the innate immune system. CD46 protects autologous cells from complement attack by binding to complement proteins C3b and C4b and serving as a cofactor for their cleavage. Recent data show that CD46 also plays a role in mediating acquired immune responses, and in triggering autophagy. In addition to these physiologic functions, a significant number of pathogens, including select adenoviruses, measles virus, human herpes virus 6 (HHV-6), Streptococci, and Neisseria, use CD46 as a cell attachment receptor. We have determined the crystal structure of the extracellular region of CD46 in complex with the human adenovirus type 11 fiber knob. Extracellular CD46 comprises four short consensus repeats (SCR1-SCR4) that form an elongated structure resembling a hockey stick, with a long shaft and a short blade. Domains SCR1, SCR2 and SCR3 are arranged in a nearly linear fashion. Unexpectedly, however, the structure reveals a profound bend between domains SCR3 and SCR4, which has implications for the interactions with ligands as well as the orientation of the protein at the cell surface. This bend can be attributed to an insertion of five hydrophobic residues in a SCR3 surface loop. Residues in this loop have been implicated in interactions with complement, indicating that the bend participates in binding to C3b and C4b. The structure provides an accurate framework for mapping all known ligand binding sites onto the surface of CD46, thereby advancing an understanding of how CD46 acts as a receptor for pathogens and physiologic ligands of the immune system
    • …
    corecore