27 research outputs found

    Etude locale de la thermique dans les piles à combustibles pour application automobile. Corrélation à la durée de vie

    Get PDF
    One of the main challenges for Proton Exchange Membrane Fuel Cells development is the performance loss, which largely limits the durability. The study of the degradation phenomena of the different MEA components is a challenge addressed by many researchers, but a study at a stack scale is needed in order to better understand the ageing mechanisms. Indeed, in an industrial fuel cell the operating conditions are not homogeneous as for laboratory fuel cells, especially as regards thermal aspects. The heterogeneities are particularly emphasized for automotive fuel cells, because of the compactness constraint of the cooling circuit. Moreover, the requirements of cold start should be considered, as well as the inertial effects of the stacks and the increased heterogeneities during the driving cycles.In this work, the effects of the temperature heterogeneities and hot spots on the automotive fuel cell performances and degradations are investigated. The study is conducted in different conditions: nominal conditions, load/thermal cycling and New European Driving Cycles (NEDC).The work is composed of an experimental study, which consists of ageing tests on fuel cells and on-line diagnosis at both global and local scales. At the end of the tests, post-mortem analyses of the aged components are conducted. In parallel, a physic-based model is developed in order to predict the local temperature and humidity in the different components of the cell. Then, the impact of the reactive gases and cooling flow fields design on the thermal and water management of the cell is investigated. Finally, the experimental and modeling results are coupled in order to investigate the correlation between heat management, water management and degradations.L'un des principaux freins au développement des piles à combustible de type PEMFC (Proton Exchange Membrane Fuel Cell) est lié aux phénomènes de dégradation des performances qui les pénalisent encore en termes de durée de vie. L'étude de ces phénomènes au niveau des composants de l’AME est un thème abordé aujourd'hui par de nombreuses équipes de recherche, mais une étude à une échelle d’un stack est nécessaire pour mieux comprendre les mécanismes en jeu. En effet, dans un stack les conditions de fonctionnement ne sont pas homogènes comme dans les cellules de laboratoire, notamment au niveau thermique. Ceci est particulièrement exacerbé dans les piles pour application automobile, dont la compacité contraint fortement la conception du circuit de refroidissement. De plus, les exigences en termes de démarrage à froid sont à prendre en compte, avec notamment la limitation de l'inertie thermique de l'empilement ou l'apparition d'hétérogénéités plus fortes pendant les phases transitoires.Ce travail de thèse se propose d'étudier l'effet d'hétérogénéités de température sur la performance d'une pile en application automobile et sa dégradation. L'étude est menée dans différentes conditions de fonctionnement: fonctionnement nominal, cyclage thermique et cyclage NEDC (New European Driving Cycles).Cette étude comporte une partie expérimentale, centrée sur des essais de vieillissement en pile et un travail sur le diagnostic électrochimique global et local. Elle est complétée par des expertises post-mortem des assemblages membrane-électrodes et des plaques testées. En parallèle, un travail de modélisation est mené pour relier les constatations expérimentales à une description des phénomènes en présence. L'influence du design des canaux de réactifs et de caloporteur sur le fonctionnement des piles est étudiée. Enfin, l’effet de la gestion thermique sur la dégradation des performances et sur la détérioration des composants de la pile est étudié

    Degradation in photoelectrochemical devices: Review with an illustrative case study

    Get PDF
    The durability, reliability, and robustness of photoelectrochemical (PEC) devices are key factors for advancing the practical large-scale implementation of cost-competitive solar fuel production. We review the known degradation mechanisms occurring in water-splitting photoelectrochemical devices. The degradation of single components is discussed in detail, and the parameters and conditions which influence it are presented. Device short-term durability depends on the semiconductor material and its interface with the electrolyte. Catalyst and electrolyte degradations are considerable challenges for long-term durability. We highlight how PEC device design choices can affect the salience of alternative degradation mechanisms. The PEC device architecture and the initial operating design point are crucial for observed device performance loss. Device degradation behavior is further impacted by irradiation intensity and concentration, and by current density and concentration. Enhancing a physical understanding of degradation phenomena and investigating their effect on component properties is of utmost importance for predicting performance loss and tackling the durability challenge of PEC devices

    Etude locale de la thermique dans les piles à combustibles pour application automobile. Corrélation à la durée de vie

    No full text
    One of the main challenges for Proton Exchange Membrane Fuel Cells development is the performance loss, which largely limits the durability. The study of the degradation phenomena of the different MEA components is a challenge addressed by many researchers, but a study at a stack scale is needed in order to better understand the ageing mechanisms. Indeed, in an industrial fuel cell the operating conditions are not homogeneous as for laboratory fuel cells, especially as regards thermal aspects. The heterogeneities are particularly emphasized for automotive fuel cells, because of the compactness constraint of the cooling circuit. Moreover, the requirements of cold start should be considered, as well as the inertial effects of the stacks and the increased heterogeneities during the driving cycles.In this work, the effects of the temperature heterogeneities and hot spots on the automotive fuel cell performances and degradations are investigated. The study is conducted in different conditions: nominal conditions, load/thermal cycling and New European Driving Cycles (NEDC).The work is composed of an experimental study, which consists of ageing tests on fuel cells and on-line diagnosis at both global and local scales. At the end of the tests, post-mortem analyses of the aged components are conducted. In parallel, a physic-based model is developed in order to predict the local temperature and humidity in the different components of the cell. Then, the impact of the reactive gases and cooling flow fields design on the thermal and water management of the cell is investigated. Finally, the experimental and modeling results are coupled in order to investigate the correlation between heat management, water management and degradations.L'un des principaux freins au développement des piles à combustible de type PEMFC (Proton Exchange Membrane Fuel Cell) est lié aux phénomènes de dégradation des performances qui les pénalisent encore en termes de durée de vie. L'étude de ces phénomènes au niveau des composants de l’AME est un thème abordé aujourd'hui par de nombreuses équipes de recherche, mais une étude à une échelle d’un stack est nécessaire pour mieux comprendre les mécanismes en jeu. En effet, dans un stack les conditions de fonctionnement ne sont pas homogènes comme dans les cellules de laboratoire, notamment au niveau thermique. Ceci est particulièrement exacerbé dans les piles pour application automobile, dont la compacité contraint fortement la conception du circuit de refroidissement. De plus, les exigences en termes de démarrage à froid sont à prendre en compte, avec notamment la limitation de l'inertie thermique de l'empilement ou l'apparition d'hétérogénéités plus fortes pendant les phases transitoires.Ce travail de thèse se propose d'étudier l'effet d'hétérogénéités de température sur la performance d'une pile en application automobile et sa dégradation. L'étude est menée dans différentes conditions de fonctionnement: fonctionnement nominal, cyclage thermique et cyclage NEDC (New European Driving Cycles).Cette étude comporte une partie expérimentale, centrée sur des essais de vieillissement en pile et un travail sur le diagnostic électrochimique global et local. Elle est complétée par des expertises post-mortem des assemblages membrane-électrodes et des plaques testées. En parallèle, un travail de modélisation est mené pour relier les constatations expérimentales à une description des phénomènes en présence. L'influence du design des canaux de réactifs et de caloporteur sur le fonctionnement des piles est étudiée. Enfin, l’effet de la gestion thermique sur la dégradation des performances et sur la détérioration des composants de la pile est étudié

    Local thermal analysis of fuels cells for automotive application. Impact on durability

    No full text
    L'un des principaux freins au développement des piles à combustible de type PEMFC (Proton Exchange Membrane Fuel Cell) est lié aux phénomènes de dégradation des performances qui les pénalisent encore en termes de durée de vie. L'étude de ces phénomènes au niveau des composants de l’AME est un thème abordé aujourd'hui par de nombreuses équipes de recherche, mais une étude à une échelle d’un stack est nécessaire pour mieux comprendre les mécanismes en jeu. En effet, dans un stack les conditions de fonctionnement ne sont pas homogènes comme dans les cellules de laboratoire, notamment au niveau thermique. Ceci est particulièrement exacerbé dans les piles pour application automobile, dont la compacité contraint fortement la conception du circuit de refroidissement. De plus, les exigences en termes de démarrage à froid sont à prendre en compte, avec notamment la limitation de l'inertie thermique de l'empilement ou l'apparition d'hétérogénéités plus fortes pendant les phases transitoires.Ce travail de thèse se propose d'étudier l'effet d'hétérogénéités de température sur la performance d'une pile en application automobile et sa dégradation. L'étude est menée dans différentes conditions de fonctionnement: fonctionnement nominal, cyclage thermique et cyclage NEDC (New European Driving Cycles).Cette étude comporte une partie expérimentale, centrée sur des essais de vieillissement en pile et un travail sur le diagnostic électrochimique global et local. Elle est complétée par des expertises post-mortem des assemblages membrane-électrodes et des plaques testées. En parallèle, un travail de modélisation est mené pour relier les constatations expérimentales à une description des phénomènes en présence. L'influence du design des canaux de réactifs et de caloporteur sur le fonctionnement des piles est étudiée. Enfin, l’effet de la gestion thermique sur la dégradation des performances et sur la détérioration des composants de la pile est étudié.One of the main challenges for Proton Exchange Membrane Fuel Cells development is the performance loss, which largely limits the durability. The study of the degradation phenomena of the different MEA components is a challenge addressed by many researchers, but a study at a stack scale is needed in order to better understand the ageing mechanisms. Indeed, in an industrial fuel cell the operating conditions are not homogeneous as for laboratory fuel cells, especially as regards thermal aspects. The heterogeneities are particularly emphasized for automotive fuel cells, because of the compactness constraint of the cooling circuit. Moreover, the requirements of cold start should be considered, as well as the inertial effects of the stacks and the increased heterogeneities during the driving cycles.In this work, the effects of the temperature heterogeneities and hot spots on the automotive fuel cell performances and degradations are investigated. The study is conducted in different conditions: nominal conditions, load/thermal cycling and New European Driving Cycles (NEDC).The work is composed of an experimental study, which consists of ageing tests on fuel cells and on-line diagnosis at both global and local scales. At the end of the tests, post-mortem analyses of the aged components are conducted. In parallel, a physic-based model is developed in order to predict the local temperature and humidity in the different components of the cell. Then, the impact of the reactive gases and cooling flow fields design on the thermal and water management of the cell is investigated. Finally, the experimental and modeling results are coupled in order to investigate the correlation between heat management, water management and degradations

    Electrochemical reactor

    No full text
    The present relates to an internally cooled and humidified electrochemical reactor comprising at least one open-pore cellular plate, which is made of a conductive open-cell material adapted to permit direct circulation of gas and liquid through it in a stratified two-phase flow regime, for humidification and cooling of said reactor through convective evaporation across a continuous Knudsen layer. The reactor can incorporate a vapor permeable membrane, a hydrophilic wall, and fluid recirculating systems. It also relates to methods of uniformly feeding the reactants to the reactor, and efficient product removal

    A thermally synergistic photo-electrochemical hydrogen generator operating under concentrated solar irradiation

    No full text
    Achieving high current densities while maintaining high energy conversion efficiency is one of the main challenges for enhanc-ing the competitiveness of photo-electrochemical devices. We describe a concept that allows this challenge to be overcome by operating under concentrated solar irradiation (up to 474 kW m−2), using thermal integration, mass transport optimization and a close electronic integration between the photoabsorber and electrocatalyst. We quantify the increase in the theoretical maximum efficiencies resulting from thermal integration, and experimentally validate the concept using a III–V-based photoab-sorber and IrRuOx–Pt-based electrocatalysts. We reach current densities higher than 0.88 A cm−2 at calculated solar-to-hydro-gen conversion efficiencies above 15%. Device performance, dynamic response and stability are investigated, demonstrating the ability to produce hydrogen stably under varying conditions for more than two hours. The current density and output power (27 W) achieved provide a pathway for device scalability aimed towards the large-scale deployment of photo-electrochemical hydrogen production

    Comparison of the inhibition of commensally and enteropathogenic E. coli strains in the presence of Eucalyptus microcorys leaves extract in aquatic microcosm

    No full text
    International audienceThis study aimed to assess the inhibition of the commensally and enteropathogenic E. coli strains in aquatic microcosm under various concentrations of Eucalyptus microcorys leaves extract incubated under different temperatures. The extract concentrations were 1%, 1.5% and 2%. The incubation temperatures were 7°C, 23°C, 37° and 44°C. The abundance of the colony forming units (CFU) of each of the cell strains in the presence of Eucalyptus extract, decreased in most cases with respect to the increasing of the concentration of aqueous extract and the incubation temperature. The highest CAIRs were registered at 2% of aqueous extract for both cell strains. The highest CAIRs of the commensally E. coli strains were 4.176.h - 1 ,5.722.h-1 , 5.865.h -1 and 6.319.h -1 registered under the incubation temperature 7°C, 23°C, 37°C and 44°C respectively. For the Enteropathogenic E. coli strains they were 3.547.h -1 , 6.112.h -1 , 8.365.h -1 and 7.027.h -1 under the same incubation temperatures respectively. The cell inhibition percentage varied from one strains to another and with respect to the extract concentration and temperature incubation. With each E. coli strains, the highest cell inhibition percentage was registered under 37°C at 1%, and under 23°C and 37°C at 1.5% of the extract concentration. At the extract concentration 2%, the highest values of the inhibition percentages were noted with most of the incubations temperatures. A significant difference was noted between the inhibition rate of commensally and enteropathogenic strains (P<0.05)
    corecore