73 research outputs found

    Δπ=0 reverse osmosis enriches a high osmotic pressure solution from a low-titre fermentation broth to a saturated solution or salt form using RO and NF membranes

    Get PDF
    Diverse biotechnology products are produced by microbial or eukaryotic cell fermentations in aqueous solutions. Removal of water is inevitable to enrich the product into a concentrated solution or into solid forms (such as crystals). The theoretical minimum energy required to remove 1 m3 of water is 716 kWh for thermal methods and 1 kWh for reverse osmosis (RO). In practice, the thermal methods equipped with heat energy recycling needs about 25 kWh to remove 1 m3 of water, and the RO methods needs about 4 kWh since extra energy (3 kWh) is required to operate pumps and other facilities in a plant. In general, membrane processes need less energy than thermal processes since there is no phase change in the separation processes and do not damage heat-sensitive biotechnology products. While both RO and NF membranes are permeable to water, RO membrane retains NaCl molecules and NF membrane is permeable to NaCl molecules, which is useful to remove inorganic salts from the products. Unlike thermal processes, the application of the membrane processes is limited by high osmotic pressure as the product solution is enriched by removing water. Chang et al. (2013) proposed a concept of osmotic pressure-free reverse osmosis (Δπ=0 RO) that overcomes this limitation and allows concentration of any solution with high osmotic pressure to its saturation point and further to crystal form. Δπ=0 RO, a two-component system, is distinct from 3-component forward osmosis and does not require the third component (draw component or extraction solvent) that must be separated from the aqueous solution at the end. This presentation will compare (1) ways of Δπ=0 RO technologies in desalination, and, furthermore (2) dewatering and desalination of high osmotic solutions of NaCl (343 bar), volatile fatty acids (400 – 600 bar), and fuel ethanol (6000 bar) with thermal separation methods in terms of energy consumption and potential of Δπ=0 RO technology. Chang et al. (2017), US patent 14,764,975(2015, 07,30), registration in progres

    Characteristics of Nasal Resonance and Perceptual Rating in Prelingual Hearing Impaired Adults

    Get PDF
    ObjectivesResonance problems in hearing impaired (HI) individuals have been described as aspects of nasality. However, there are limitations in being able to explain the range of resonance problems. Therefore, this study suggests a perceptual rating that will effectively explain the characteristics of resonance problems in HI individuals.MethodsNasalance scores were obtained from 32 subjects in each of HI and normal hearing (NH) groups using a nasometer. The subjects were categorized into groups based on normal and abnormal nasalance ranges. The abnormal nasalance range group was further divided into hyper-, hypo-, and mixed-nasal groups. Nasalance scores were based the individuals performance in a series of passage and syllable tasks. The perceptual rating was evaluated using a newly introduced tool, 'vertical focus of resonance' (VFR), which focuses on the resonance energy in the frontal, throat, pharyngeal and nasal locations.ResultsThe NH group demonstrated a significantly lower nasalance score in the oral coupling and passage tasks than the HI group. Based on the results of nasalance correlation analysis, the HI group showed highly significant correlations between syllable and passage tasks, as contrasted with the NH group. There were significant differences in VFR between the nasalance types in both the NH and the HI groups.ConclusionThe HI hyper-nasal group showed tendencies of velopharyngeal opening, as opposed to the HI hypo-nasal group which showed tendencies of velopharyngeal closure. The HI mixed-nasal group showed inappropriate coordination of velopharyngeal function. In the HI group, the results of VFR showed that the air flow and the resonance energy were not released from the cavity of resonance. The suggested VFR tool explains the focusing characteristics of resonance energy within a continuation of speech sound regardless of the phonetic environment. Therefore, VFR may be a useful tool in explaining the deviant resonance patterns of HI individuals

    Validation study of the Dinamap ProCare 200 upper arm blood pressure monitor in children and adolescents

    Get PDF
    PurposeTo validate the Dinamap ProCare 200 blood pressure (BP) monitor against a mercury sphygmomanometer in children 7 to 18 years old in accordance with the 2010 International Protocol of European Society of Hypertension (ESH-IP2) and the British Hypertension Society (BHS) protocol.MethodsForty-five children were recruited for the study. A validation procedure was performed following the protocol based on the ESH-IP2 and BHS protocols for children and adolescents. Each subject underwent 7 sequential BP measurements alternatively with a mercury sphygmomanometer and the test device by trained nurses. The results were analyzed according to the validation criteria of ESH-IP2.ResultsThe mean (±SD) difference in the absolute BP values between test device and mercury sphygmomanometer readings was 1.85±1.65 mmHg for systolic BP (SBP) and 4.41±3.53 mmHg for diastolic BP (DBP). These results fulfilled the Association for the Advancement of Medical Instrumentation criterion of a mean±SD below 5±8 mmHg for both SBP and DBP. The percentages of test device-observer mercury sphygmomanometer BP differences within 5, 10, and 15 mmHg were 96%, 100%, and 100% for SBP, and 69%, 92%, and 100% for DBP, respectively, in the part 1 analysis; both SBP and DBP passed the part 1 criteria. In the part 2 analysis, SBP passed the criteria but DBP failed.ConclusionAlthough the Dinamap ProCare 200 BP monitor failed an adapted ESH-IP2, SBP passed. When comparing BP readings measured by oscillometers and mercury sphygmomanometers, one has to consider the differences between them, particularly in DBP, because DBP can be underestimated

    Efficacy of Lactic Acid Bacteria (LAB) supplement in management of constipation among nursing home residents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Constipation is a significant problem in the elderly, specifically nursing home and/or extended-care facility residents are reported to suffer from constipation. Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as diarrhea and constipation effect. The objective of this study was to investigate the efficacy of this LAB supplement in the management of nursing home residents.</p> <p>Methods</p> <p>Nineteen subjects (8M, 11F; mean age 77.1 ± 10.1) suffering with chronic constipation were assigned to receive LAB (3.0 × 10<sup>11 </sup>CFU/g) twice (to be taken 30 minutes after breakfast and dinner) a day for 2 weeks in November 2008. Subjects draw up a questionnaire on defecation habits (frequency of defecation, amount and state of stool), and we collected fecal samples from the subjects both before entering and after ending the trial, to investigate LAB levels and inhibition of harmful enzyme activities. Results were tested with SAS and Student's t-test.</p> <p>Results</p> <p>Analysis of questionnaire showed that there was an increase in the frequency of defecation and amount of stool excreted in defecation habit after LAB treatment, but there were no significant changes. And it also affects the intestinal environment, through significantly increase (<it>p </it>< 0.05) fecal LAB levels. In addition, tryptophanase and urease among harmful enzyme activities of intestinal microflora were significantly decreased (<it>p </it>< 0.05) after LAB treatment.</p> <p>Conclusion</p> <p>LAB, when added to the standard treatment regimen for nursing home residents with chronic constipation, increased defecation habit such as frequency of defecation, amount and state of stool. So, it may be used as functional probiotics to improve human health by helping to prevent constipation.</p

    Complete genome sequence of Middle East respiratory syndrome coronavirus KOR/KNIH/002_05_2015, isolated in South Korea

    Get PDF
    The full genome sequence of a Middle East respiratory syndrome coronavirus (MERS-CoV) was identified from cultured and isolated in Vero cells. The viral genome sequence has high similarity to 53 human MERS-CoVs, ranging from 99.5% to 99.8% at the nucleotide level. © 2015 Kim et al.

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore