6 research outputs found

    Kaposi's sarcoma-associated herpesvirus-encoded LANA associates with glucocorticoid receptor and enhances its transcriptional activities

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA), which interacts with cellular proteins, plays a central role in modification of viral and/or cellular gene expression. Here, we show that LANA associates with glucocorticoid receptor (GR), and that LANA enhances the transcriptional activity of GR. Co-immunoprecipitation revealed a physical interaction between LANA and GR in transiently transfected 293T and HeLa cells. In human B-lymphoma cells, LANA overexpression enhanced GR activity and cell growth suppression following glucocorticoid stimulation. Furthermore, confocal microscopy showed that activated GR was bound to LANA and accumulated in the nucleus, leading to an increase in binding of activated GR to the glucocorticoid response element of target genes. Taken together, KSHV-derived LANA acts as a transcriptional co-activator of GR. Our results might suggest a careful use of glucocorticoids in the treatment of patients with KSHV-related malignancies such as Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. (C) 2015 Elsevier Inc. All rights reserved

    Zipper-interacting Protein Kinase (ZIPK) Modulates Canonical Wnt/β-Catenin Signaling through Interaction with Nemo-like Kinase and T-cell Factor 4 (NLK/TCF4)*

    No full text
    Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase that has been implicated in apoptosis and transcriptional regulation. Here, we identified Nemo-like kinase (NLK) as a novel ZIPK-binding partner and found that ZIPK regulates NLK-mediated repression of canonical Wnt/β-catenin signaling. Indeed, siRNA-mediated reduction of endogenous ZIPK expression reduced Wnt/β-catenin signaling. Furthermore, ZIPK affected the formation of NLK-T-cell factor 4 (TCF4) complex. Importantly, ZIPK siRNA treatment in human colon carcinoma cells resulted in a reduction of β-catenin/TCF-mediated gene expression and cell growth. These results indicate that ZIPK may serve as a transcriptional regulator of canonical Wnt/β-catenin signaling through interaction with NLK/TCF4
    corecore