965 research outputs found
Dissolution of calcium carbonate: observations and model results in the North Atlantic
International audienceWe investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons. The study relies on observations from the open subpolar North Atlantic [sNA] and on a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings and do not indicate a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale
Dissolution of calcium carbonate: observations and model results in the subpolar North Atlantic
We investigate the significance of in situ dissolution of calcium carbonate above its saturation horizons using observations from the open subpolar North Atlantic [sNA] and to a lesser extent a 3-D biogeochemical model. The sNA is particularly well suited for observation-based detections of in situ, i.e. shallow-depth CaCO3 dissolution [SDCCD] as it is a region of high CaCO3 production, deep CaCO3 saturation horizons, and precisely-defined pre-formed alkalinity. Based on the analysis of a comprehensive alkalinity data set we find that SDCCD does not appear to be a significant process in the open sNA. The results from the model support the observational findings by indicating that there is not a significant need of SDCCD to explain observed patterns of alkalinity in the North Atlantic. Instead our investigation points to the importance of mixing processes for the redistribution of alkalinity from dissolution of CaCO3 from below its saturation horizons. However, mixing has recently been neglected for a number of studies that called for SDCCD in the sNA and on global scale
Impact of circulation on export production, dissolved organic matter and dissolved oxygen in the ocean: Results from OCMIP-2
How brains make decisions
This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum
Decision Theory (QDT) that we have developed in a series of publications since
2008. We formulate a general mathematical scheme of how decisions are taken,
using the point of view of psychological and cognitive sciences, without
touching physiological aspects. The basic principles of how intelligence acts
are discussed. The human brain processes involved in decisions are argued to be
principally different from straightforward computer operations. The difference
lies in the conscious-subconscious duality of the decision making process and
the role of emotions that compete with utility optimization. The most general
approach for characterizing the process of decision making, taking into account
the conscious-subconscious duality, uses the framework of functional analysis
in Hilbert spaces, similarly to that used in the quantum theory of
measurements. This does not imply that the brain is a quantum system, but just
allows for the simplest and most general extension of classical decision
theory. The resulting theory of quantum decision making, based on the rules of
quantum measurements, solves all paradoxes of classical decision making,
allowing for quantitative predictions that are in excellent agreement with
experiments. Finally, we provide a novel application by comparing the
predictions of QDT with experiments on the prisoner dilemma game. The developed
theory can serve as a guide for creating artificial intelligence acting by
quantum rules.Comment: Latex file, 20 pages, 3 figure
Physical and mental health comorbidity is common in people with multiple sclerosis: nationally representative cross-sectional population database analysis
<b>Background</b> Comorbidity in Multiple Sclerosis (MS) is associated with worse health and higher mortality. This study aims to describe clinician recorded comorbidities in people with MS. <p></p>
<b>Methods</b> 39 comorbidities in 3826 people with MS aged ≥25 years were compared against 1,268,859 controls. Results were analysed by age, gender, and socioeconomic status, with unadjusted and adjusted Odds Ratios (ORs) calculated using logistic regression. <p></p>
<b>Results</b> People with MS were more likely to have one (OR 2.44; 95% CI 2.26-2.64), two (OR 1.49; 95% CI 1.38-1.62), three (OR 1.86; 95% CI 1.69-2.04), four or more (OR 1.61; 95% CI 1.47-1.77) non-MS chronic conditions than controls, and greater mental health comorbidity (OR 2.94; 95% CI 2.75-3.14), which increased as the number of physical comorbidities rose. Cardiovascular conditions, including atrial fibrillation (OR 0.49; 95% CI 0.36-0.67), chronic kidney disease (OR 0.51; 95% CI 0.40-0.65), heart failure (OR 0.62; 95% CI 0.45-0.85), coronary heart disease (OR 0.64; 95% CI 0.52-0.71), and hypertension (OR 0.65; 95% CI 0.59-0.72) were significantly less common in people with MS. <p></p>
<b>Conclusion</b> People with MS have excess multiple chronic conditions, with associated increased mental health comorbidity. The low recorded cardiovascular comorbidity warrants further investigation
Recommended from our members
Building WF16: construction of a PPNA pisé structure in Southern Jordan
The Pre-Pottery Neolithic A (PPNA) period in Southwest Asia is essential for our understanding of the transition to sedentary, agricultural communities. Developments in architecture are key to understanding this transition, but many aspects of PPNA architecture remain elusive, such as construction techniques, the selection of building materials, and the functional use of space. The primary aim of the research described within this contribution was to build a PPNA-like structure in order to answer questions about PPNA architecture in general, while specifically addressing issues raised by the excavation of structures at the site of WF16, Southern Jordan. The second aim was to display a ‘PPNA’ building to visitors in Wadi Faynan to enhance their understanding of the period. The experimental construction based on one of the WF16 structures showed that 1) required materials can be acquired locally; 2) a construction technique using mud layers as described in this paper was likely used; 3) flat, or very slightly dome-shaped, roofs are functional and can also be used as a solid working platform; 4) the WF16 small semi-subterranean buildings appear inappropriate for housing a nuclear family unit
Global oceanic production of nitrous oxide
We use transient time distributions calculated from tracer data together with in situ measurements of nitrous oxide (N2O) to estimate the concentration of biologically produced N2O and N2O production rates in the ocean on a global scale. Our approach to estimate the N2O production rates integrates the effects of potentially varying production and decomposition mechanisms along the transport path of a water mass.We estimate that the oceanic N2O production is dominated by nitrification with a contribution of only approximately 7 per cent by denitrification. This indicates that previously used approaches have overestimated the contribution by denitrification. Shelf areas may account for only a negligible fraction of the global production; however, estuarine sources and coastal upwelling of N2O are not taken into account in our study. The largest amount of subsurface N2O is produced in the upper 500 m of the water column. The estimated global annual subsurface N2O production ranges from 3.1+/-0.9 to 3.4+/-0.9 Tg N yr^-1. This is in agreement with estimates of the global N2O emissions to the atmosphere and indicates that a N2O source in the mixed layer is unlikely. The potential future development of the oceanic N2O source in view of the ongoing changes of the ocean environment (deoxygenation, warming, eutrophication and acidification) is discussed
ERYTHROPOIETIN FOR THE TREATMENT OF SUBARACHNOID HEMORRAGE: A FEASIBLE INGREDIENT FOR A SUCCESS MEDICAL RECIPE
Subaracnhoid hemorrage (SAH) following aneurysm bleeding accounts for 6% to 8% of all cerebrovascular accidents. Althoug an aneurysm can be effectively managed by surgery or endovascular therapy, delayed cerebral ischemia is diagnosed in a high percentage of patients resulting in significant morbility and mortality. Cerebral vasospasm occurs in more than half of all patients after aneurysm rupture and is recognized as the leading cause of delayed cerebral ischemia after SAH. Hemodynamic strategies and endovascular procedures may be considered fo the treatment of cerebral vasospasm. In recent years, the mechanism contributing to the development of vasospasm, abnormal reactivity of cerebral arteries and cerebral ischemia following SAH, have been intensively investigated. A number of pathological processes have been identified in the pathogenesis of vasospasm including endothelial injury, smooth muscle cell contraction from spasmogenic substances produced by the subarachnoid blood clots, changes in vascular responsiveness and inflammatory response of the vascular endothelium. to date, the current therapeutic interventions remain ineffective being limited to the manipulation os systemic blood pressure, variation of blood volume and viscosity, and control of arterial carbon dioxide tension. In this scenario, the hormone erythropoietin (EPO), has been found to exert neuroprotective action during experimental SAH when its recombinant form (rHuEPO) is systematically administered. However, recent translation of experimental data into clinical trials has suggested an unclear role of recombinant human EPO in the setting of SAH. In this context, the aim of the recurrent review is to present current evidence on the potential role of EPO in cerebrovascular dysfunction following aneurysmal subarachnoid hemorrage
Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.
The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics: (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630,
2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric
quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
- …
