4 research outputs found

    Scaffold Vaccines for Generating Robust and Tunable Antibody Responses

    Get PDF
    Traditional bolus vaccines often fail to sustain robust adaptive immune responses, typically requiring multiple booster shots for optimal efficacy. Additionally, these provide few opportunities to control the resulting subclasses of antibodies produced, which can mediate effector functions relevant to distinct disease settings. Here, it is found that three scaffold-based vaccines, fabricated from poly(lactide-co-glycolide) (PLG), mesoporous silica rods, and alginate cryogels, induce robust, long-term antibody responses to a model peptide antigen gonadotropin-releasing hormone with single-shot immunization. Compared to a bolus vaccine, PLG vaccines prolong germinal center formation and T follicular helper cell responses. Altering the presentation and release of the adjuvant (cytosine-guanosine oligodeoxynucleotide, CpG) tunes the resulting IgG subclasses. Further, PLG vaccines elicit strong humoral responses against disease-associated antigens HER2 peptide and pathogenic E. coli, protecting mice against E. coli challenge more effectively than a bolus vaccine. Scaffold-based vaccines may thus enable potent, durable and versatile humoral immune responses against disease

    Matrix viscoelasticity controls spatiotemporal tissue organization

    No full text
    Biomolecular and physical cues of the extracellular matrix environment regulate collective cell dynamics and tissue patterning. Nonetheless, how the viscoelastic properties of the matrix regulate collective cell spatial and temporal organization is not fully understood. Here we show that the passive viscoelastic properties of the matrix encapsulating a spheroidal tissue of breast epithelial cells guide tissue proliferation in space and in time. Matrix viscoelasticity prompts symmetry breaking of the spheroid, leading to the formation of invading finger-like protrusions, YAP nuclear translocation and epithelial-to-mesenchymal transition both in vitro and in vivo in a Arp2/3-complex-dependent manner. Computational modelling of these observations allows us to establish a phase diagram relating morphological stability with matrix viscoelasticity, tissue viscosity, cell motility and cell division rate, which is experimentally validated by biochemical assays and in vitro experiments with an intestinal organoid. Altogether, this work highlights the role of stress relaxation mechanisms in tissue growth dynamics, a fundamental process in morphogenesis and oncogenesis. © 2022, The Author(s), under exclusive licence to Springer Nature Limited

    Immune‐responsive biodegradable scaffolds for enhancing neutrophil regeneration

    No full text
    Abstract Neutrophils are essential effector cells for mediating rapid host defense and their insufficiency arising from therapy‐induced side‐effects, termed neutropenia, can lead to immunodeficiency‐associated complications. In autologous hematopoietic stem cell transplantation (HSCT), neutropenia is a complication that limits therapeutic efficacy. Here, we report the development and in vivo evaluation of an injectable, biodegradable hyaluronic acid (HA)‐based scaffold, termed HA cryogel, with myeloid responsive degradation behavior. In mouse models of immune deficiency, we show that the infiltration of functional myeloid‐lineage cells, specifically neutrophils, is essential to mediate HA cryogel degradation. Post‐HSCT neutropenia in recipient mice delayed degradation of HA cryogels by up to 3 weeks. We harnessed the neutrophil‐responsive degradation to sustain the release of granulocyte colony stimulating factor (G‐CSF) from HA cryogels. Sustained release of G‐CSF from HA cryogels enhanced post‐HSCT neutrophil recovery, comparable to pegylated G‐CSF, which, in turn, accelerated cryogel degradation. HA cryogels are a potential approach for enhancing neutrophils and concurrently assessing immune recovery in neutropenic hosts

    Cell and tissue engineering in lymph nodes for cancer immunotherapy

    No full text
    corecore