34 research outputs found

    2-Verma modules and the Khovanov-Rozansky link homologies

    Get PDF
    We explain how Queffelec-Sartori's construction of the HOMFLY-PT link polynomial can be interpreted in terms of parabolic Verma modules for gl2n\mathfrak{gl}_{2n}. Lifting the construction to the world of categorification, we use parabolic 2-Verma modules to give a higher representation theory construction of Khovanov-Rozansky's triply graded link homology

    Tensor product categorifications, Verma modules and the blob 2-category

    Get PDF

    Real Springer fibers and odd arc algebras

    Get PDF
    We give a topological description of the two-row Springer fiber over the real numbers. We show its cohomology ring coincides with the oddification of the cohomology ring of the complex Springer fiber introduced by Lauda-Russell. We also realize Ozsv\'ath-Rasmussen-Szab\'o odd TQFT from pullbacks and exceptional pushforwards along inclusion and projection maps between hypertori. Using these results, we construct the odd arc algebra as a convolution algebra over components of the real Springer fiber, giving an odd analogue of a construction of Stroppel-Webster

    Indications for the Nonexistence of Three-Neutron Resonances near the Physical Region

    Get PDF
    The pending question of the existence of three-neutron resonances near the physical energy region is reconsidered. Finite rank neutron-neutron forces are used in Faddeev equations, which are analytically continued into the unphysical energy sheet below the positive real energy axis. The trajectories of the three-neutron S-matrix poles in the states of total angular momenta and parity J^\pi=1/2 +- and J^\pi= 3/2 +- are traced out as a function of artificial enhancement factors of the neutron-neutron forces. The final positions of the S-matrix poles removing the artificial factors are found in all cases to be far away from the positive real energy axis, which provides a strong indication for the nonexistence of nearby three-neutron resonances. The pole trajectories close to the threshold E=0 are also predicted out of auxiliary generated three-neutron bound state energies using the Pad\'e method and agree very well with the directly calculated ones.Comment: 20 pages, 7 Postscript figures, fig.1 is corrected, uses relax.st

    Near Threshold K+K- Meson-Pair Production in Proton-Proton Collisions

    Get PDF
    The near threshold total cross section and angular distributions of K+K- pair production via the reaction pp --> ppK+K- have been studied at an excess energy of Q = 17 MeV using the COSY-11 facility at the cooler synchrotron COSY. The obtained cross section as well as an upper limit at an excess energy of Q = 3 MeV represent the first measurements on the K+K- production in the region of small excess energies where production via the channel pp --> pp Phi --> ppK+K- is energetically forbidden. The possible influence of a resonant production via intermediate scalar states f0(980) and a0(980) is discussed.Comment: 8 pages, 6 figures, replaced with revised version, accepted for publication in Phys. Lett.

    S-wave eta'-proton FSI; phenomenological analysis of near-threshold production of pi0, eta, and eta' mesons in proton-proton collisions

    Full text link
    We describe a novel technique for comparing total cross sections for the reactions pp --> pp pi(0), pp --> pp eta, and pp --> pp eta' close to threshold. The initial and final state proton-proton interactions are factored out of the total cross section, and the dependence of this reduced cross section on the volume of phase space is discussed. Different models of the proton-proton interaction are compared. We argue that the scattering length of the S-wave eta'-proton interaction is of the order of 0.1 fm.Comment: 10 pages, 5 figure

    Energy Dependence of the Near-Threshold Total Cross-Section for the pp --> pp eta' Reaction

    Full text link
    Total cross sections for the pp --> pp eta' reaction have been measured in the excess energy range from Q = 1.53 MeV to Q = 23.64 MeV. The experiment has been performed at the internal installation COSY-11 using a stochastically cooled proton beam of the COoler SYnchrotron COSY and a hydrogen cluster target. The determined energy dependence of the total cross section weakens the hypothesis of the S-wave repulsive interaction between the eta' meson and the proton. New data agree well with predictions based on the phase-space distribution modified by the proton-proton final-state-interaction (FSI) only.Comment: 12 pages, 1 table, 4 figure

    Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat

    Get PDF
    Background and Aims Biochar amendment to soil is a promising practice of enhancing productivity of agricultural systems. The positive effects on crop are often attributed to a promotion of beneficial soil microorganisms while suppressing pathogens e.g. This study aims to determine the influence of biochar feedstock on (i) spontaneous and fungi inoculated microbial colonisation of biochar particles and (ii) physical pore space characteristics of native and fungi colonised biochar particles which impact microbial habitat quality. Methods Pyrolytic biochars from mixed woods and Miscanthus were investigated towards spontaneous colonisation by classical microbiological isolation, phylogenetic identification of bacterial and fungal strains, and microbial respiration analysis. Physical pore space characteristics of biochar particles were determined by X-ray μ-CT. Subsequent 3D image analysis included porosity, surface area, connectivities, and pore size distribution. Results Microorganisms isolated from Wood biochar were more abundant and proliferated faster than those from the Miscanthus biochar. All isolated bacteria belonged to gram-positive bacteria and were feedstock specific. Respiration analysis revealed higher microbial activity for Wood biochar after water and substrate amendment while basal respiration was on the same low level for both biochars. Differences in porosity and physical surface area were detected only in interaction with biochar-specific colonisation. Miscanthus biochar was shown to have higher connectivity values in surface, volume and transmission than Wood biochars as well as larger pores as observed by pore size distribution. Differences in physical properties between colonised and non-colonised particles were larger in Miscanthus biochar than in Wood biochar. Conclusions Vigorous colonisation was found on Wood biochar compared to Miscanthus biochar. This is contrasted by our findings from physical pore space analysis which suggests better habitat quality in Miscanthus biochar than in Wood biochar. We conclude that (i) the selected feedstocks display large differences in microbial habitat quality as well as physical pore space characteristics and (ii) physical description of biochars alone does not suffice for the reliable prediction of microbial habitat quality and recommend that physical and surface chemical data should be linked for this purpose
    corecore