14 research outputs found

    A Moderate Duration of Stress Promotes Behavioral Adaptation and Spatial Memory in Young C57BL/6J Mice

    No full text
    Stress may serve multiple roles in cerebral functioning, ranging from a highly appropriate behavioral adaptation to a critical risk factor for susceptibility to mood disorder and cognitive impairment. It is well known that E/I (excitation/inhibition) balance is essential for maintaining brain homeostasis. However, it remains largely unknown how GABAergic and Glutamatergic neurons respond to different stressful stimuli and whether the GABAergic-Glutamatergic neuron balance is related to the transition between adaptive and maladaptive behaviors. Here, we subjected 3-month-old mice to chronic mild stress (CMS) for a period of one, two, and four weeks, respectively. The results showed that the two-week CMS procedure produced adaptive effects on behaviors and cognitive performance, with a higher number of GABAergic neuron and VGluT1-positive neurons, increasing the expressions of p-GluN2B, Reelin, and syn-PSD-95 protein in the hippocampus. In contrast, the prolonged behavioral challenge (4 week) imposes a passive coping behavioral strategy and cognitive impairment, decreased the number of GABAergic neuron, hyperactivity of VGluT1-positive neuron, increased the ratio of p-GluN2B, and decreased the expression of Reelin, syn-PSD-95 in the hippocampus. These findings suggest that a moderate duration of stress probably promotes behavioral adaptation and spatial memory by maintaining a GABAergic-Glutamatergic neuron balance and promoting the expression of synaptic plasticity-related proteins in the brain

    Lu Xun and Cannibalism

    No full text

    From Cannibalism to Carnivorism

    No full text

    Notes

    No full text

    Blending Chinese in America

    No full text

    Hunger Revolution and Revolutionary Hunger

    No full text

    Introduction

    No full text

    Postrevolutionary Leftovers

    No full text
    corecore