61 research outputs found

    Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy

    Get PDF
    Diabetic retinopathy (DR) affects approximately one-third of diabetic patients and, if left untreated, progresses to proliferative DR (PDR) with associated vitreous hemorrhage, retinal detachment, iris neovascularization, glaucoma and irreversible blindness. In vitreous samples of human patients with PDR, we found elevated levels of hypoxia inducible factor 1 alpha (HIF1α). HIFs are transcription factors that promote hypoxia adaptation and have important functional roles in a wide range of ischemic and inflammatory diseases. To recreate the human PDR phenotype for a preclinical animal model, we generated a mouse with neuroretinal-specific loss of the von Hippel Lindau tumor suppressor protein, a protein that targets HIF1α for ubiquitination. We found that the neuroretinal cells in these mice overexpressed HIF1α and developed severe, irreversible ischemic retinopathy that has features of human PDR. Rapid progression of retinopathy in these mutant mice should facilitate the evaluation of therapeutic agents for ischemic and inflammatory blinding disorders. In addition, this model system can be used to manipulate the modulation of the hypoxia signaling pathways, for the treatment of non-ocular ischemic and inflammatory disorders

    A Method of Drusen Measurement Based on the Geometry of Fundus Reflectance

    Get PDF
    BACKGROUND: The hallmarks of age-related macular degeneration, the leading cause of blindness in the developed world, are the subretinal deposits known as drusen. Drusen identification and measurement play a key role in clinical studies of this disease. Current manual methods of drusen measurement are laborious and subjective. Our purpose was to expedite clinical research with an accurate, reliable digital method. METHODS: An interactive semi-automated procedure was developed to level the macular background reflectance for the purpose of morphometric analysis of drusen. 12 color fundus photographs of patients with age-related macular degeneration and drusen were analyzed. After digitizing the photographs, the underlying background pattern in the green channel was leveled by an algorithm based on the elliptically concentric geometry of the reflectance in the normal macula: the gray scale values of all structures within defined elliptical boundaries were raised sequentially until a uniform background was obtained. Segmentation of drusen and area measurements in the central and middle subfields (1000 μm and 3000 μm diameters) were performed by uniform thresholds. Two observers using this interactive semi-automated software measured each image digitally. The mean digital measurements were compared to independent stereo fundus gradings by two expert graders (stereo Grader 1 estimated the drusen percentage in each of the 24 regions as falling into one of four standard broad ranges; stereo Grader 2 estimated drusen percentages in 1% to 5% intervals). RESULTS: The mean digital area measurements had a median standard deviation of 1.9%. The mean digital area measurements agreed with stereo Grader 1 in 22/24 cases. The 95% limits of agreement between the mean digital area measurements and the more precise stereo gradings of Grader 2 were -6.4 % to +6.8 % in the central subfield and -6.0 % to +4.5 % in the middle subfield. The mean absolute differences between the digital and stereo gradings 2 were 2.8 +/- 3.4% in the central subfield and 2.2 +/- 2.7% in the middle subfield. CONCLUSIONS: Semi-automated, supervised drusen measurements may be done reproducibly and accurately with adaptations of commercial software. This technique for macular image analysis has potential for use in clinical research

    The Naming of Names: Guidelines for Gene Nomenclature in Marchantia.

    Get PDF
    While Marchantia polymorpha has been utilized as a model system to investigate fundamental biological questions for over almost two centuries, there is renewed interest in M. polymorpha as a model genetic organism in the genomics era. Here we outline community guidelines for M. polymorpha gene and transgene nomenclature, and we anticipate that these guidelines will promote consistency and reduce both redundancy and confusion in the scientific literature

    Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

    Get PDF
    The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP
    corecore