75 research outputs found

    Fast High-Responsivity Few-Layer MoTe2 Photodetectors

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.The Transition Metal Dichalcogenide MoTe2 is fabricated via mechanical exfoliation into few-layer Field Effect Transistors (FETs) having a hole mobility of 2.04 V/cm2/s. Four-layer MoTe2 FETs show a high photoresponsivity of 6 A/W and a response time, at around 160 μs, over 100 times faster than previously reported for MoTe2. Few-layer MoTe2 thus appears as a strong candidate for high speed and high sensitivity photodetection applications.CDW would like to acknowledge funding via EPSRC grants EP/M015173/1 and EP/M015130/1. TJO acknowledges funding from the EPSRC Centre for Doctoral Training in Metamaterials, grant number EP/L015331/

    Rad GTPase Deletion Atenuates Post-Ischemic Cardiac Dysfunction and Remodeling

    Get PDF
    The protein Rad interacts with the L-type calcium channel complex to modulate trigger Ca2+ and hence to govern contractility. Reducing Rad levels increases cardiac output. Ablation of Rad also attenuated the inflammatory response following acute myocardial infarction. Future studies to target deletion of Rad in the heart could be conducted to establish a novel treatment paradigm whereby pathologically stressed hearts would be given safe, stable positive inotropic support without arrhythmias and without pathological structural remodeling. Future investigations will also focus on establishing inhibitors of Rad and testing the efficacy of Rad deletion in cardioprotection relative to the time of onset of acute myocardial infarction

    N-Acetylcysteine and Allopurinol Synergistically Enhance Cardiac Adiponectin Content and Reduce Myocardial Reperfusion Injury in Diabetic Rats

    Get PDF
    Background: Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings: Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance: NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats. © 2011 Wang et al.published_or_final_versio

    Neutrophils can Promote Clotting via FXI and Impact Clot Structure via Neutrophil Extracellular Traps in a Distinctive Manner in vitro

    Get PDF
    Neutrophils and neutrophil extracellular traps (NETs) have been shown to be involved in coagulation. However, the interactions between neutrophils or NETs and fibrin(ogen) in clots, and the mechanisms behind these interactions are not yet fully understood. In this in vitro study, the role of neutrophils or NETs on clot structure, formation and dissolution was studied with a combination of confocal microscopy, turbidity and permeation experiments. Factor (F)XII, FXI and FVII-deficient plasmas were used to investigate which factors may be involved in the procoagulant effects. We found both neutrophils and NETs promote clotting in plasma without the addition of other coagulation triggers, but not in purified fibrinogen, indicating that other factors mediate the interaction. The procoagulant effects of neutrophils and NETs were also observed in FXII- and FVII-deficient plasma. In FXI-deficient plasma, only the procoagulant effects of NETs were observed, but not of neutrophils. NETs increased the density of clots, particularly in the vicinity of the NETs, while neutrophils-induced clots were less stable and more porous. In conclusion, NETs accelerate clotting and contribute to the formation of a denser, more lysis resistant clot architecture. Neutrophils, or their released mediators, may induce clotting in a different manner to NETs, mediated by FXI

    Administration of an LXR agonist promotes atherosclerotic lesion remodelling in murine inflammatory arthritis

    No full text
    Abstract Objectives The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis. Methods Ldlr−/− mice were fed a western‐type diet for 14 weeks to initiate atherogenesis, then switched to a chow diet to induce lesion regression and divided into three groups; (1) control, (2) K/BxN serum transfer inflammatory arthritis (K/BxN) or (3) K/BxN arthritis and LXR agonist T0901317 daily for 2 weeks. Results LXR activation during murine inflammatory arthritis completely restored atherosclerotic lesion regression in arthritic mice, evidenced by reduced lesion size, macrophage abundance and lipid content. Mechanistically, serum from arthritic mice promoted foam cell formation, demonstrated by increased cellular lipid accumulation in macrophages and paralleled by a reduction in mRNA of the cholesterol efflux transporters Abca1, Abcg1 and Apoe. T0901317 reduced lipid loading and increased Abca1 and Abcg1 expression in macrophages exposed to arthritic serum and increased ABCA1 levels in atherosclerotic lesions of arthritic mice. Moreover, arthritic clinical score was also attenuated with T0901317. Conclusion Taken together, we show that the LXR agonist T0901317 rescues impaired atherosclerotic lesion regression in murine arthritis because of enhanced cholesterol efflux transporter expression and reduced foam cell development in atherosclerotic lesions
    corecore