32 research outputs found

    Spectroscopy of i-Dropout Galaxies with an NB921-Band Depression in the Subaru Deep Field

    Full text link
    We report new spectroscopy of two star-forming galaxies with strong Ly_alpha emission at z=6.03 and z=6.04 in the Subaru Deep Field. These two objects are originally selected as i'-dropouts (i'-z' > 1.5) showing an interesting photometric property, the ``NB921 depression''. The NB921-band (centered at 9196A) magnitude is significantly depressed with respect to the z'-band magnitude. The optical spectra of these two objects exhibit asymmetric emission-lines at lambda_obs ~ 8540A and ~ 8560A, suggesting that these objects are Ly_alpha emitters at z~6. The rest-frame equivalent widths of the Ly_alpha emission of the two objects are 94A and 236A; the latter one is the Ly_alpha emitter with the largest Ly_alpha equivalent width at z > 6 ever spectroscopically confirmed. The spectroscopically measured Ly_alpha fluxes of these two objects are consistent with the interpretation that the NB921 depression is caused by the contribution of the strong Ly_alpha emission to the z'-band flux. Most of the NB921-depressed i'-dropout objects are thought to be strong Ly_alpha emitters at 6.0 < z < 6.5; Galactic L and T dwarfs and NB921-dropout galaxies at z > 6.6 do not dominate the NB921-depressed i'-dropout sample. Thus the NB921-depression method is very useful for finding high-z Ly_alpha emitters with a large Ly_alpha equivalent width over a large redshift range, 6.0 < z < 6.5. Although the broadband-selected sample at z ~ 3 contains only a small fraction of objects with a Ly_alpha equivalent width larger than 100A, the i'-dropout sample of the Subaru Deep Field contains a much larger fraction of such strong Ly_alpha emitters. This may imply a strong evolution of the Ly_alpha equivalent width from z > 6 to z ~ 3.Comment: 21 pages, 6 figures, to appear in The Astrophysical Journa

    An Observational Pursuit for Population III Stars in a Ly_alpha Emitter at z=6.33 through HeII Emission

    Full text link
    We present a very deep near-infrared spectroscopic observation of a strong Ly_alpha emitter at z=6.33, SDF J132440.6+273607, which we used to search for HeII 1640. This emission line is expected if the target hosts a significant number of population III stars. Even after 42 ksec of integration with the Subaru/OHS spectrograph, no emission-line features are detected in the JH band, which confirms that SDF J132440.6+273607 is neither an active galactic nucleus nor a low-zz emission-line object. We obtained a 2sigma upper-limit of 9.06e-18 ergs/s/cm^2 on the HeII 1640 emission line flux, which corresponds to a luminosity of 4.11e42 ergs/s. This upper-limit on the HeII 1640 luminosity implies that the upper limit on population III star-formation rate is in the range 4.9--41.2 M_sun/yr if population III stars suffer no mass loss, and in the range 1.8--13.2 M_sun/yr if strong mass loss is present. The non-detection of HeII in SDF J132440.6+273607 at z=6.33 may thus disfavor weak feedback models for population III stars.Comment: 13 pages, 3 figures, to appear in The Astrophysical Journal Letter

    The Quasar-LBG Two-point Angular Cross-correlation Function at z ~ 4 in the COSMOS Field

    Get PDF
    In order to investigate the origin of quasars, we estimate the bias factor for low-luminosity quasars at high redshift for the first time. In this study, we use the two-point angular cross-correlation function (CCF) for both low-luminosity quasars at −24<M1450<−22-24<M_{\rm 1450}<-22 and Lyman-break galaxies (LBGs). Our sample consists of both 25 low-luminosity quasars (16 objects are spectroscopically confirmed low-luminosity quasars) in the redshift range 3.1<z<4.53.1<z<4.5 and 835 color-selected LBGs with zLBGâ€Č<25.0z^{\prime}_{\rm LBG}<25.0 at z∌4z\sim4 in the COSMOS field. We have made our analysis for the following two quasar samples; (1) the spectroscopic sample (the 16 quasars confirmed by spectroscopy), and (2) the total sample (the 25 quasars including 9 quasars with photometric redshifts). The bias factor for low-luminosity quasars at z∌4z\sim4 is derived by utilizing the quasar-LBG CCF and the LBG auto-correlation function. We then obtain the 86%86\% upper limits of the bias factors for low-luminosity quasars, that are 5.63 and 10.50 for the total and the spectroscopic samples, respectively. These bias factors correspond to the typical dark matter halo masses, log (MDM/(h−1M⊙))=(M_{\rm DM}/(h^{-1}M_{\odot}))=12.712.7 and 13.513.5, respectively. This result is not inconsistent with the predicted bias for quasars which is estimated by the major merger models.Comment: 13 pages, 9 figures, Accepted for publication in Ap

    Chemical properties in the most distant radio galaxy

    Full text link
    We present a deep optical spectrum of TN J0924-2201, the most distant radio galaxy at z = 5.19, obtained with FOCAS on the Subaru Telescope. We successfully detect, for the first time, the CIV1549 emission line from the narrow-line region (NLR). In addition to the emission-line fluxes of Ly alpha and CIV, we set upper limits on the NV and HeII emissions. We use these line detections and upper limits to constrain the chemical properties of TN J0924-2201. By comparing the observed emission-line flux ratios with photoionization models, we infer that the carbon-to-oxygen relative abundance is already [C/O] > -0.5 at a cosmic age of ~ 1.1 Gyr. This lower limit on [C/O] is higher than the ratio expected at the earliest phases of the galaxy chemical evolution, indicating that TN J0924-2201 has already experienced significant chemical evolution at z = 5.19.Comment: Accepted for publication in A&A, 5 pages, 3 figure

    The End of the Reionization Epoch Probed by Ly-alpha Emitters at z=6.5 in the Subaru Deep Field

    Get PDF
    We report an extensive search for Lyman-alpha emitters (LAEs) at z=6.5 in the Subaru Deep Field. Subsequent spectroscopy with Subaru and Keck identified eight more LAEs, giving a total of 17 spectroscopically confirmed LAEs at z=6.5. Based on this spectroscopic sample of 17, complemented by a photometric sample of 58 LAEs, we have derived a more accurate Lyman-alpha luminosity function of LAEs at z=6.5, which reveals an apparent deficit at the bright end of ~0.75 mag fainter L*, compared with that observed at z=5.7. The difference in the LAE luminosity functions between z=5.7 and 6.5 is significant at the 3-sigma level, which is reduced to 2-sigma when cosmic variance is taken into account. This result may imply that the reionization of the universe has not been completed at z=6.5. We found that the spatial distribution of LAEs at z=6.5 was homogeneous over the field. We discuss the implications of these results for the reionization of the universe.Comment: To appear in APJ vol.648. Only minor corrections have been made. Black&White version is available at http://zone.mtk.nao.ac.jp/~kashik/sdf/z6p5lae/paper/sdf_z6p5lae_bw.pd

    Subaru Studies of the Cosmic Dawn

    Get PDF
    An overview on the current status of the census of the early universe population is given. Observational surveys of high redshift objects provide direct opportunities to study the early epoch of the Universe. The target population included are Lyman Alpha Emitters (LAE), Lyman Break Galaxies (LBG), gravitationally lensed galaxies, quasars and gamma-ray bursts (GRB). The basic properties of these objects and the methods used to study them are reviewed. The present paper highlights the fact that the Subaru Telescope group made significant contributions in this field of science to elucidate the epoch of the cosmic dawn and to improve the understanding of how and when infant galaxies evolve into mature ones.Comment: 14 pages, 11 figures, accepted for publication in the Proceedings of the Japan Academy, Series

    Constraints on the faint end of the quasar luminosity function at z~5 in the COSMOS field

    Get PDF
    We present the result of our low-luminosity quasar survey in the redshift range of 4.5 < z < 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z~5, that are ~ 3 mag fainter than the SDSS quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z~5 while a low-luminosity type-2 quasar at z~5.07 was discovered. In order to constrain the faint end of the quasar luminosity function at z~5, we calculated the 1sigma confidence upper limits of the space density of type-1 quasars. As a result, the 1sigma confidence upper limits on the quasar space density are Phi< 1.33*10^{-7} Mpc^{-3} mag^{-1} for -24.52 < M_{1450} < -23.52 and Phi< 2.88*10^{-7} Mpc^{-3} mag^{-1} for -23.52 < M_{1450} < -22.52. The inferred 1sigma confidence upper limits of the space density are then used to provide constrains on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z~5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M_{1450} ~ -23), being similar to the trend found for quasars with high luminosity (M_{1450}<-26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.Comment: 8 pages, 9 figures, 1 table, accepted for publication in Ap

    The [OII]3727 Luminosity function and Star Formation Rate at z~1.2 in the COSMOS 2 Square-degree Field and the Subaru Deep Field

    Get PDF
    We have carried out a wide-field imaging survey for [OII]3727 emitting galaxies at z~1.2 in the HST COSMOS 2 square degree field using the Suprime-Cam on the Subaru Telescope. The survey covers a sky area of 6700 arcmin^2 in the COSMOS field, and a redshift range between 1.17 and 1.20 (Delta_z = 0.03), corresponding to a survey volume of 5.56*10^5 Mpc^3. We obtain a sample of 3176 [OII] emitting galaxies with observed emission-line equivalent widths greater than 26 AA. Since our survey tends to sample brighter [OII]3727 emitting galaxies, we also analyze a sample of fainter [OII]3727 emitting galaxies found in the Subaru Deep Field (SDF). We find an extinction-corrected [OII] luminosity density of 10^{40.35^+0.08_-0.06} ergs s^-1 Mpc-3, corresponding to star formation rate density of 0.32^+0.06_-0.04 M_sun yr-1 Mpc^-3 in the COSMOS field at z~1.2. This is the largest survey for [OII]3727 emitters beyond z=1 currently available.Comment: 33 pages, 9 figures. to appear in the ApJ Supplement COSMOS Special Issu
    corecore