100 research outputs found

    Measuring Brief

    Get PDF

    A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA

    Get PDF
    Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen (δ15N, ) and sulfur (δ34S, ), as well as and deposition rates from the late-1940s thru the early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends Network (NADP/NTN) data in western Wyoming. The most enriched δ34S value in the UFG ice-core samples coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining δ34S values were similar to the isotopic composition of coal from southern Wyoming. The δ15N values in ice-core samples representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 ‰ and all fall within the δ15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply increasing U.S. emissions data from 1950 to the mid-1970s

    Mercury inputs to Great Salt Lake, Utah: Reconnaissance-Phase results

    Get PDF
    In response to increasing public concern regarding mercury (Hg) cycling in Great Salt Lake (GSL) ecosystem, a series of studies were initiated to differentiate between the mass of Hg from riverine versus atmospheric sources to GSL. Cumulative riverine Hg load to GSL during a 1 year time period (April 1, 2007 to March 31, 2008) was 6 kg, with almost 50% of the cumulative Hg load contributed by outflow from Farmington Bay. Comparison of cumulative annual atmospheric Hg deposition (32 kg) to annual riverine deposition (6 kg) indicates that atmospheric deposition is the dominant input source to GSL. A sediment core collected from the southern arm of GSL was used to reconstruct annual Hg deposition rates over the past ~ 100 years. Unlike most freshwater lakes, small changes in water level in GSL significantly changes the lake surface area available for direct deposition of atmospheric Hg. There is good agreement between lake elevation (and corresponding lake surface area) and Hg deposition rates estimated from the sediment core. Higher lake levels, combined with sediment focusing processes, result in an increase in Hg accumulation rates observed in the sediment core. These same combination of processes are responsible for the lower Hg accumulation rates observed in the sediment core during historic low stands of GSL

    Microbialite response to an anthropogenic salinity gradient in Great Salt Lake, Utah.

    Get PDF
    A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%-31% salinity) and a less saline South Arm (SA; 11%-14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL

    Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Get PDF
    An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15) was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyl)triethoxysilane (APTES) groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science
    • …
    corecore