37 research outputs found

    Using simultaneous voltage and calcium imaging to study fast Ca 2+ channels

    No full text
    International audienceThe combination of fluorescence measurements of membrane potential and intracellular Ca2+ concentration allows correlating the electrical and calcium activity of a cell with spatial precision. The technical advances allowing this type of measurement were achieved only recently and represent an important step in the progress of the voltage imaging approach pioneered over 40 years ago by Lawrence B. Cohen. Here, we show how this approach can be used to investigate the function of Ca2+ channels using the foreseen possibility to extract Ca2+ currents from imaging experiments. The kinetics of the Ca2+ current, mediated by voltage-gated Ca2+ channels, can be accurately derived from the Ca2+ fluorescence measurement using Ca2+ indicators with KD>10  μM that equilibrate in <1  ms. In this respect, the imaging apparatus dedicated to this application is described in detail. Next, we illustrate the mathematical procedure to extract the current from the Ca2+ fluorescence change, including a method to calibrate the signal to charge flux density. Finally, we show an example of simultaneous membrane potential and Ca2+ optical measurement associated with an action potential at a CA1 hippocampal pyramidal neuron from a mouse brain slice. The advantages and limitations of this approach are discussed

    Cortactin regulates endo-lysosomal sorting of AMPARs via direct interaction with GluA2 subunit

    Get PDF
    Abstract AMPA receptor (AMPAR) trafficking is a key determinant of synaptic strength and synaptic plasticity. Under basal conditions, constitutive trafficking maintains surface AMPARs by internalization into the endosomal system, where the majority are sorted and targeted for recycling back to the plasma membrane. NMDA receptor (NMDAR)-dependent Long-Term Depression (LTD) is characterised by a reduction in synaptic strength, and involves endosomal sorting of AMPARs away from recycling pathways to lysosomes. The mechanisms that determine whether AMPARs are trafficked to lysosomes or to recycling endosomes, especially in response to NMDAR stimulation, are unclear. Here, we define a role for the actin-regulatory protein cortactin as a mediator of AMPAR endosomal sorting by direct interaction with the GluA2 subunit. Disrupting GluA2-cortactin binding in neurons causes the targeting of GluA2/A3-containing receptors to lysosomes and their consequent degradation, resulting in a loss of surface and synaptic GluA2 under basal conditions and an occlusion of subsequent LTD expression. Furthermore, we show that NMDAR stimulation causes a dissociation of endogenous cortactin from GluA2 via tyrosine phosphorylation of cortactin. These results demonstrate that cortactin maintains GluA2/A3 levels by directing receptors away from lysosomes, and that disrupting GluA2-cortactin interactions to target GluA2/A3 to lysosomes is an essential component of LTD expression

    Cortactin regulates endo-lysosomal sorting of AMPARs via direct interaction with GluA2 subunit

    Get PDF
    Abstract AMPA receptor (AMPAR) trafficking is a key determinant of synaptic strength and synaptic plasticity. Under basal conditions, constitutive trafficking maintains surface AMPARs by internalization into the endosomal system, where the majority are sorted and targeted for recycling back to the plasma membrane. NMDA receptor (NMDAR)-dependent Long-Term Depression (LTD) is characterised by a reduction in synaptic strength, and involves endosomal sorting of AMPARs away from recycling pathways to lysosomes. The mechanisms that determine whether AMPARs are trafficked to lysosomes or to recycling endosomes, especially in response to NMDAR stimulation, are unclear. Here, we define a role for the actin-regulatory protein cortactin as a mediator of AMPAR endosomal sorting by direct interaction with the GluA2 subunit. Disrupting GluA2-cortactin binding in neurons causes the targeting of GluA2/A3-containing receptors to lysosomes and their consequent degradation, resulting in a loss of surface and synaptic GluA2 under basal conditions and an occlusion of subsequent LTD expression. Furthermore, we show that NMDAR stimulation causes a dissociation of endogenous cortactin from GluA2 via tyrosine phosphorylation of cortactin. These results demonstrate that cortactin maintains GluA2/A3 levels by directing receptors away from lysosomes, and that disrupting GluA2-cortactin interactions to target GluA2/A3 to lysosomes is an essential component of LTD expression

    The Small GTPase Arf1 Modulates Arp2/3-Mediated Actin Polymerization via PICK1 to Regulate Synaptic Plasticity

    Get PDF
    SummaryInhibition of Arp2/3-mediated actin polymerization by PICK1 is a central mechanism to AMPA receptor (AMPAR) internalization and long-term depression (LTD), although the signaling pathways that modulate this process in response to NMDA receptor (NMDAR) activation are unknown. Here, we define a function for the GTPase Arf1 in this process. We show that Arf1-GTP binds PICK1 to limit PICK1-mediated inhibition of Arp2/3 activity. Expression of mutant Arf1 that does not bind PICK1 leads to reduced surface levels of GluA2-containing AMPARs and smaller spines in hippocampal neurons, which occludes subsequent NMDA-induced AMPAR internalization and spine shrinkage. In organotypic slices, NMDAR-dependent LTD of AMPAR excitatory postsynaptic currents is abolished in neurons expressing mutant Arf1. Furthermore, NMDAR stimulation downregulates Arf1 activation and binding to PICK1 via the Arf-GAP GIT1. This study defines Arf1 as a critical regulator of actin dynamics and synaptic function via modulation of PICK1

    Differential Regulation of GABABReceptor Trafficking by Different Modes ofN-methyl-d-aspartate (NMDA) Receptor Signaling

    Get PDF
    Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Contribution à l étude du rôle des récepteurs tachykinines de type 2 dans la neurorégulation de l activité motrice du côlon chez l Homme

    No full text
    La présente étude a été développée pour analyser l expression des récepteurs tachykinines de type 2 (NK2r) au niveau du côlon chez l Homme. Nos investigations ont été réalisées sur des spécimens ex vivo et maintenus en survie in vitro. L analyse des NK2r a été réalisée au niveau des plexus nerveux myentériques et des musculeuses longitudinale et circulaire. Des méthodes de biologie moléculaire, et d immunofluorescence couplées à une analyse informatique d images obtenues en microscopie confocale ont été utilisées. Par RT-qPCR, nous avons caractérisé l ARNm du gène codant pour le NK2r fonctionnel (a-TACR2) et déterminé son niveau d expression. Les NK2r sont exprimés dans les neurones myentériques, qui sur la base de leur contenu en médiateurs peuvent être rattachés aux neurones sensitifs afférents primaires intrinsèques, aux interneurones et aux neurones moteurs. Ces données dans leur ensemble montrent qu au niveau des plexus myentériques, les tachykinines peuvent intervenir, via les NK2r, dans la régulation pré- et post-synaptique de la transmission des messages nerveux. Dans les musculeuses, les NK2r sont exprimés au niveau pré-jonctionnel au sein des varicosités nerveuses et au niveau post-jonctionnel, sur les cellules musculaires. Au niveau des cellules musculaires, l activation des NK2r est suivie de leur internalisation puis de leur recyclage dont nous détaillons pour la première fois la cinétique. Nos travaux apportent une nouvelle contribution au rôle des NK2r dans la neurorégulation de l activité motrice du côlon humain et ouvrent des perspectives nouvelles de recherche sur leur implication dans les troubles moteurs intestinaux liés à certaines maladies inflammatoires du tractus digestif.AIX-MARSEILLE3-BU Sc.St Jérô (130552102) / SudocSudocFranceF
    corecore