21 research outputs found

    Knock-Down of Core Proteins Regulating MicroRNA Biogenesis Has No Effect on Sensitivity of Lung Cancer Cells to Ionizing Radiation

    Get PDF
    Recent studies underline the important role of microRNAs (miRNA) in the development of lung cancer. The main regulators of miRNA biogenesis are the ribonucleases Drosha, Dicer and Ago2. Here the role of core proteins of miRNA biogenesis machinery in the response of human non-small and small cell lung carcinoma cell lines to treatment with ionizing radiation was assessed. We found that Drosha and Dicer were expressed at higher levels in radioresistant but not in sensitive cell lines. However, down-regulation of either Dicer or Drosha had no effect on the sensitivity of cells to irradiation. Elimination of components of the RNA-induced silencing complex Ago2 and Tudor staphylococcal nuclease also did not sensitize cells to the same treatment. Thus, modulation of miRNA biogenesis machinery is not sufficient to increase the radiosensitivity of lung tumors and other strategies are required to combat lung cancer

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    The knock-down of a component of the RNA-induced silencing complex (RISC), Tudor-SN, is insufficient to sensitize NSCLC to irradiation.

    No full text
    <p>The level of Tudor-SN expression and cleavage of PARP in U1810 (A), A549 (C) and H661 (D) cells transfected (48 h) with control (si scr) or Tudor-SN (si TSN) siRNA analyzed by Western blot 48 h after irradiation. Equal loading was verified using anti-GAPDH antibodies. (B) The apoptotic cell death in U1810 cells after transfection with TSN siRNA and irradiation. All data are representative of three independent experiments.</p

    Knock-down of Dicer and Drosha is not sufficient to sensitize NSCLC cells to irradiation.

    No full text
    <p>(A) The level of Dicer expression, cleavage of PARP and processing of caspase-3 and -9 in U1810 cells transfected (48 h) with control (si scr) or Dicer (siDicer) siRNA assessed by Western blot 48 h after irradiation. Equal loading was verified using anti-GAPDH antibodies. Data are representative of three independent experiments. (B) Detection of apoptotic cell death in U1810 assessed by measuring the sub-G1 population after transfection (48 h) with control or Dicer siRNA and irradiation treatment (48 h). (C) Caspase-3-like activity (fold increase with respect to control) in U1810 cells after treatment with either irradiation alone or in combination with transfection of control or Dicer siRNA (for details see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0033134#s2" target="_blank">Materials and methods</a>). (D) The level of Drosha expression and cleavage of PARP in U1810 cells transfected (48 h) with control (si scr) or Drosha (siDrosha) siRNA analyzed by Western blot 48 h after treatment with irradiation. Equal loading was verified using anti-GAPDH antibodies. All data are representative of three independent experiments. (B) Apoptotic cell death in U1810 measured by analysis of the sub-G1 population after transfection (48 h) with control or Drosha siRNA and irradiation treatment (48 h). Results shown are the mean±S.E.M. of three independent experiments.</p

    Depletion of a component of the RNA-induced silencing complex (RISC), Argonaute2, does not affect the radioresistance of NSCLC.

    No full text
    <p>(A) The level of Argonaute2 (AGO2) mRNA in U1810 cells transfected with control (scram) or AGO2 siRNA normalized against 18S ribosomal RNA. Results are the mean±S.E.M. of three independent experiments. (B) Cleavage of PARP and processing of caspase-3 and -9 in U1810 cells transfected (48 h) with control (si scr) or AGO2 siRNA, and then subjected to irradiation for 48 h. Equal loading was verified using anti-GAPDH antibodies. All data are representative of three independent experiments. (C) Detection of apoptotic cell death in U1810 cells after transfection (48 h) with control or AGO2 siRNA and subsequent treatment with irradiation (48 h). (D) Caspase-3-like activity (fold increase with respect to control) in U1810 cells after treatment with either irradiation alone or in combination with transfection with control or AGO2 siRNA. All results shown are the mean±S.E.M. of three independent experiments.</p

    NSCLC and SCLC cells differ in sensitivity to radiation treatment and display differential expression of proteins involved in the regulation of miRNA biogenesis.

    No full text
    <p>(A) Western blot analysis of the level of protein expression of Drosha, Dicer, exportin 5 (XPO5), Tudor-SN (TSN), protein activator of the interferon-induced protein kinase (PACT), fragile X mental retardation syndrome-related protein 1 (FXR1) and Argonaute 2 (AGO2) in a panel of NSCLC (U1810, U1299, A549, H661, H157, H23) and SCLC (U1285, H82, H69, U1690, U1906, U2020) cell lines. (B) Densitometric analysis of relative levels of protein expression in H23, H1299, U1810 and H661 cell lines. Cell lines distributed according to radiosensitivity, measured as the fraction surviving at 2 Gy (SF2). Equal loading was verified using anti-β-actin antibodies. Results are representative of three independent experiments.</p

    Influence of print speed and nozzle diameter on the fiber alignment in 3D printed ultra-high-performance concrete

    No full text
    The limitations in the available reinforcing methods have accompanied the increasing popularity of 3D Concrete Printing (3DCP). Incorporating steel fibers as reinforcement is a promising approach to overcome these limitations. However, the impact of the printing process on the alignment of these fibers is not well understood. Therefore, the objective of this research is to quantitatively analyze the distribution of steel fiber alignment in 3D printed concrete. To achieve this, digital image analysis was employed to assess the influence of nozzle diameter, print speed, and fiber content on fiber alignment in both mold-cast and 3D-printed samples. UHPC matrix without fiber addition and fiber reinforced UHPC composites with brass-coated steel fiber contents of 1.5% and 3% by volume fraction were printed. Furthermore, Material nozzles ranging from 10 mm to 40 mm in size were employed and printing speeds of 15, 25, 35, and 45 mm/s were adjusted. Subsequently, the study examined the implications of fiber alignment on the hardened performance of printed specimens and compared them with conventionally mold-cast samples. The findings of the study demonstrated that increasing the fiber content and using smaller diameter nozzles during the printing procedure led to significant improvements in fiber orientation along the printing direction. As a result, the mechanical performance of the printed samples showed a substantial enhancement compared to the specimens produced through mold casting, primarily due to the improved fiber alignment

    Innovative methods to improve the seismic performance of precast segmental and hybrid bridge columns under cyclic loading

    No full text
    This paper investigates the seismic performance of prefabricated segmental bridge columns (PSBCs) with hybrid post-tensioned tendons and energy dissipation (ED) bars under cyclic loading. PSBCs with unbonded and hybrid bonded prestressed tendons and columns incorporating ED bars are designed to improve the lateral strength, energy dissipation, and limit the residual drift. The PSBCs under cyclic loading were investigated using the three-dimensional finite element (FE) modeling platform ABAQUS. The FE model was calibrated against experimental results, with an overall error of less than 10%. The seismic performance of the proposed PSBCs was evaluated based on critical parameters, including lateral strength, residual plastic displacement, and the energy dissipation capacity. The results show that bonding the tendons in the plastic hinge region as opposed to the overall bonding along the column leads to a better cyclic performance. The lateral strength, and recentering abilities are further improved by bonding tendons up to 2/3 of the length in the plastic hinge region, along with 100–300 mm in the footing. It was also found that selecting a longitudinal length of ED bars crossing multiple precast segmental joints and having a circumferential spread of 70–90% of core concrete results in a higher bearing capacity and energy dissipation compared to ED bars crossing the single joint
    corecore