180 research outputs found

    Development of the WHO-INTEGRATE evidence-to-decision framework: an overview of systematic reviews of decision criteria for health decision-making

    Get PDF
    Background Decision-making in public health and health policy is complex and requires careful deliberation of many and sometimes conflicting normative and technical criteria. Several approaches and tools, such as multi-criteria decision analysis, health technology assessments and evidence-to-decision (EtD) frameworks, have been proposed to guide decision-makers in selecting the criteria most relevant and appropriate for a transparent decision-making process. This study forms part of the development of the WHO-INTEGRATE EtD framework, a framework rooted in global health norms and values as reflected in key documents of the World Health Organization and the United Nations system. The objective of this study was to provide a comprehensive overview of criteria used in or proposed for real-world decision-making processes, including guideline development, health technology assessment, resource allocation and others. Methods We conducted an overview of systematic reviews through a combination of systematic literature searches and extensive reference searches. Systematic reviews reporting criteria used for real-world health decision-making by governmental or non-governmental organization on a supranational, national, or programme level were included and their quality assessed through a bespoke critical appraisal tool. The criteria reported in the reviews were extracted, de-duplicated and sorted into first-level (i.e. criteria), second-level (i.e. sub-criteria) and third-level (i.e. decision aspects) categories. First-level categories were developed a priori using a normative approach; second- and third-level categories were developed inductively. Results We included 36 systematic reviews providing criteria, of which one met all and another eleven met at least five of the items of our critical appraisal tool. The criteria were subsumed into 8 criteria, 45 sub-criteria and 200 decision aspects. The first-level of the category system comprised the following seven substantive criteria: \textquotedblHealth-related balance of benefits and harms\textquotedbl; \textquotedblHuman and individual rights\textquotedbl; \textquotedblAcceptability considerations\textquotedbl; \textquotedblSocietal considerations\textquotedbl; \textquotedblConsiderations of equity, equality and fairness\textquotedbl; \textquotedblCost and financial considerations\textquotedbl; and \textquotedblFeasibility and health system considerations\textquotedbl. In addition, we identified an eight criterion \textquotedblEvidence\textquotedbl. Conclusion This overview of systematic reviews provides a comprehensive overview of criteria used or suggested for real-world health decision-making. It also discusses key challenges in the selection of the most appropriate criteria and in seeking to implement a fair decision-making process

    Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein

    Get PDF
    Accumulation of myeloid-derived suppressor cells (MDSCs) associated with inhibition of dendritic cell (DC) differentiation is one of the major immunological abnormalities in cancer and leads to suppression of antitumor immune responses. The molecular mechanism of this phenomenon remains unclear. We report here that STAT3-inducible up-regulation of the myeloid-related protein S100A9 enhances MDSC production in cancer. Mice lacking this protein mounted potent antitumor immune responses and rejected implanted tumors. This effect was reversed by administration of wild-type MDSCs from tumor-bearing mice to S100A9-null mice. Overexpression of S100A9 in cultured embryonic stem cells or transgenic mice inhibited the differentiation of DCs and macrophages and induced accumulation of MDSCs. This study demonstrates that tumor-induced up-regulation of S100A9 protein is critically important for accumulation of MDSCs and reveals a novel molecular mechanism of immunological abnormalities in cancer

    On morphological hierarchical representations for image processing and spatial data clustering

    Full text link
    Hierarchical data representations in the context of classi cation and data clustering were put forward during the fties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in the framework of mathematical morphology: constrained connectivity and ultrametric watersheds. Constrained connectivity can be viewed as a way to constrain an initial hierarchy in such a way that a set of desired constraints are satis ed. The framework of ultrametric watersheds provides a generic scheme for computing any hierarchical connected clustering, in particular when such a hierarchy is constrained. The suitability of this framework for solving practical problems is illustrated with applications in remote sensing

    S100A9 Knockout Decreases the Memory Impairment and Neuropathology in Crossbreed Mice of Tg2576 and S100A9 Knockout Mice Model

    Get PDF
    Our previous study presented evidence that the inflammation-related S100A9 gene is significantly upregulated in the brains of Alzheimer's disease (AD) animal models and human AD patients. In addition, experiments have shown that knockdown of S100A9 expression improves cognition function in AD model mice (Tg2576), and these animals exhibit reduced amyloid plaque burden. In this study, we established a new transgenic animal model of AD by crossbreeding the Tg2576 mouse with the S100A9 knockout (KO) mouse. We observed that S100A9KO/Tg2576 (KO/Tg) mice displayed an increased spatial reference memory in the Morris water maze task and Y-maze task as well as decreased amyloid beta peptide (AΞ²) neuropathology because of reduced levels of AΞ², C-terminal fragments of amyloid precursor protein (APP-CT) and phosphorylated tau and increased expression of anti-inflammatory IL-10 and also decreased expression of inflammatory IL-6 and tumor neurosis factor (TNF)-Ξ± when compared with age-matched S100A9WT/Tg2576 (WT/Tg) mice. Overall, these results suggest that S100A9 is responsible for the neurodegeneration and cognitive deficits in Tg2576 mice. The mechanism of S100A9 is able to coincide with the inflammatory process. These findings indicate that knockout of S100A9 is a potential target for the pharmacological therapy of AD. Β© 2014 Kim et al.1

    An Evaluation of the Fe-N Phase Diagram Considering Long-Range Order of N Atoms in Ξ³'-Fe4N1-x and Ξ΅-Fe2N1-z

    Get PDF
    The chemical potential of nitrogen was described as a function of nitrogen content for the Fe-N phases Ξ±-Fe[N], Ξ³'-Fe4N1-x, and Ξ΅-Fe2N1-z. For Ξ±-Fe[N], an ideal, random distribution of the nitrogen atoms over the octahedral interstices of the bcc iron lattice was assumed; for Ξ³'-Fe4N1-x and Ξ΅-Fe2N1-z, the occurrence of a long-range ordered distribution of the nitrogen atoms over the octahedral interstices of the close packed iron sublattices (fcc and hcp, respectively) was taken into account. The theoretical expressions were fitted to nitrogen-absorption isotherm data for the three Fe-N phases. The Ξ±/Ξ± + Ξ³', Ξ± + Ξ³'/Ξ³', Ξ³'/Ξ³' + Ξ΅, and Ξ³' + Ξ΅/Ξ΅ phase boundaries in the Fe-N phase diagram were calculated from combining the quantitative descriptions for the absorption isotherms with the known composition of NH3/H2 gas mixtures in equilibrium with coexisting Ξ± and Ξ³' phases and in equilibrium with coexisting Ξ³' and Ξ΅ phases. Comparison of the present phase boundaries with experimental data and previously calculated phase boundaries showed a major improvement as compared to the previously calculated Fe-N phase diagrams, where long-range order for the nitrogen atoms in the Ξ³' and Ξ΅ phases was not accounted for

    The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.</p> <p>Methods</p> <p>In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.</p> <p>Results</p> <p>In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.</p> <p>Conclusions</p> <p>Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.</p

    Habitat-Mediated Facilitation and Counteracting Ecosystem Engineering Interactively Influence Ecosystem Responses to Disturbance

    Get PDF
    Recovery of an ecosystem following disturbance can be severely hampered or even shift altogether when a point disturbance exceeds a certain spatial threshold. Such scale-dependent dynamics may be caused by preemptive competition, but may also result from diminished self-facilitation due to weakened ecosystem engineering. Moreover, disturbance can facilitate colonization by engineering species that alter abiotic conditions in ways that exacerbate stress on the original species. Consequently, establishment of such counteracting engineers might reduce the spatial threshold for the disturbance, by effectively slowing recovery and increasing the risk for ecosystem shifts to alternative states. We tested these predictions in an intertidal mudflat characterized by a two-state mosaic of hummocks (humps exposed during low tide) dominated by the sediment-stabilizing seagrass Zostera noltii) and hollows (low-tide waterlogged depressions dominated by the bioturbating lugworm Arenicola marina). In contrast to expectations, seagrass recolonized both natural and experimental clearings via lateral expansion and seemed unaffected by both clearing size and lugworm addition. Near the end of the growth season, however, an additional disturbance (most likely waterfowl grazing and/or strong hydrodynamics) selectively impacted recolonizing seagrass in the largest (1 m2) clearings (regardless of lugworm addition), and in those medium (0.25 m2) clearings where lugworms had been added nearly five months earlier. Further analyses showed that the risk for the disturbance increased with hollow size, with a threshold of 0.24 m2. Hollows of that size were caused by seagrass removal alone in the largest clearings, and by a weaker seagrass removal effect exacerbated by lugworm bioturbation in the medium clearings. Consequently, a sufficiently large disturbance increased the vulnerability of recolonizing seagrass to additional disturbance by weakening seagrass engineering effects (sediment stabilization). Meanwhile, the counteracting ecosystem engineering (lugworm bioturbation) reduced that threshold size. Therefore, scale-dependent interactions between habitat-mediated facilitation, competition and disturbance seem to maintain the spatial two-state mosaic in this ecosystem

    Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease

    Get PDF
    During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente

    Pro-Inflammatory S100A8 and S100A9 Proteins: Self-Assembly into Multifunctional Native and Amyloid Complexes

    Get PDF
    S100A8 and S100A9 are EF-hand Ca2+ binding proteins belonging to the S100 family. They are abundant in cytosol of phagocytes and play critical roles in numerous cellular processes such as motility and danger signaling by interacting and modulating the activity of target proteins. S100A8 and S100A9 expression levels increased in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases and they are implicated in the numerous disease pathologies. The Ca2+ and Zn2+-binding properties of S100A8/A9 have a pivotal influence on their conformation and oligomerization state, including self-assembly into homo- and heterodimers, tetramers and larger oligomers. Here we review how the unique chemical and conformational properties of individual proteins and their structural plasticity at the quaternary level account for S100A8/A9 functional diversity. Additional functional diversification occurs via non-covalent assembly into oligomeric and fibrillar amyloid complexes discovered in the aging prostate and reproduced in vitro. This process is also regulated by Ca2+and Zn2+-binding and effectively competes with the formation of the native complexes. High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloid depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation
    • …
    corecore