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This paper presents a systematic theory for the construction of morphological operators on graphs. 
Graph morphology extracts structural information from graphs using predefined test probes called 

structuring graphs. Structuring graphs have a simple structure and are relatively small com pared to 

the graph that is to be transformed. A neighbourhood function on the set of vertices of a graph is 

constructed by relating individual vertices to each other whenever they belong to a local instantiation 

of the structuring graph. This function is used to construct dilations and erosions. The concept of 

structuring graph is also used to defi ne openings and closings. The resulting morphological operators 

are invariant under sym met ries of the gra ph . Graph morphology resembles classical morphology ( which 

uses structuring elements to obtain translation-invariant operators) to a large extent . However, not 

all results from classical morphology have analogues in graph morphology because the local graph 
structure may be different at different vertices. 
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1. Introduction 

l 

In many fields of research ( e.g. geography, histology, robotics) the objects of interest and their in­

terrelations are represented by a graph. In a graph the vertices correspond to objects and the edges 
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represent the relations between objects. Objects may be characterized by a finite number of (numeric 

or symbolic) parameters such as the average grey-value, area, colour, temperature, shape etc. The 

relation between objects generally corresponds to some kind of distance or (dis-) similarity measure. 

The objects themselves may also have a graph representation describing their primitive components 

and their spatial layout together with their local and global (i.e. intrinsic) topological properties of 

invariance with respect to a set of transformations. The structure of a complex object can be defined 

as the "group of all interrelations among its subparts" (see Matheron [9]). None of these interre­

lations is intrinsically more interesting than the others. The interrelations between objects (and/or 

their component parts) that are of interest depend on the property that is being studied. Thus, the 

choice of the type of information that is to be extracted from the image constitutes or frames the 

objects and their interrelations. Note that images can also be considered as graphs when the topology 

( connectivity) of the support grid is taken into account. 

Mathematical morphology is a set-theoretic approach to image processing and analysis. It consid­

ers images to be sets in the underlying support space and manipulates them using set-based operators. 

Consistent with its literal meaning, the purpose of mathematical morphology is the quantitative de­

scription of geometrical structures. Unlike purely statistical approaches to image processing which 

ignore spatial relationships between picture elements and which do not provide information about 

shape, mathematical morphology uses small probes with well defined shapes, called structuring ele­

ments, to extract specific shape information from images. Individual elements of the support grid are 

related to each other spatially whenever they belong to a local instantiation of the structuring element. 

This approach is based on the logical relations between image features rather than arithmetic ones. 

Different types of information can be extracted from the signal by varying the shape and size of the 

structuring element. 

Mathematical morphology was originally developed for binary imagery (for which set operations 

are the most common). However, it has recently been extended to arbitrary complete lattices [14,8,12]. 

The space of (binary or multilevel) functions on a graph whose vertices are given numerical (or 

symbolic) attributes can be related to a special kind of complete lattice. Hence graphs are also 

amenable to morphological transformations. In this case the structuring element is a graph that is 

relatively small and simple in comparison to the graph that is to be transformed. This is in contrast 

with Euclidean mathematical morphology where the structuring element is merely a set of points that 

has no additional (internal) structure. 

In graph morphology individual vertices of a graph are related to each other whenever they belong 

to a local instantiation of the structuring graph. Thus the neighbourhood relations between the vertices 

of a graph induce a large collection of morphological transformations. These transformations have a 

straightforward geometrical interpretation (e.g. erosions, dilations, openings, closings, skeletons etc.). 

Recently, Vincent [21,18,20,19] initiated the extension of morphology to graphs. By using simple 

neighbourhood functions he restricted his study to a subclass of morphological transformations. The 

collection of morphological transformations on graphs is considerably extended by the introduction of 

more general neighbourhood functions. This extension is essential if specific structures ( e.g. objects) 
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are to be detected within a graph (subgraph isomorphisms). The aim of the present study is to initiate 

the development of a general theory of morphology on graphs. 

Object recognition in graphs generally involves the detection of local instantiations of the ob­

ject's graph representation. This can be done by placing the (relatively small and simple) graph 

representation of the object at every vertex of the graph and monitoring the (partial) matches. Pro­

cedures like these are intricate and computationally expensive. In graph morphology objects can be 

defined as the invariants of morphological filters. Thus, it seems interesting to use graph morphological 

transformations for object recognition. 

Just like images, graphs come in several different types, depending on the range of values that 

the attributes (labels) of the vertices (pixels) can adopt. In this study we will consider multilevel 

graphs ( also called labelled graphs in the literature). In these graphs each vertex is labeled with one 

of n (usually 2k) values which are strictly ordered. A binary graph is a special case of a multilevel 

graph where n = 2. Thus , each vertex in a binary graph can only have one of two values (usually 0 

and 1). 

This paper is organized as follows. Section 2 briefly reviews the theory of mathematical mor­

phology on complete lattices. The extension of mathematical morphology to graphs is presented in 

Section 3. Section 4 introduces the concept of structuring graph and shows how this object defines a 

neighbourhood for every vertex in a graph. Dilation and erosion of a graph with a structuring graph 

are defined in Section 5. Here we also examine some basic properties of these transformations. Section 

6 shows how one can build openings and closings using the concept of a structuring graph. Some notes 

about the implementation of morphological operators on graphs can be found in Section 7. Finally, 

in Section 8, some concluding remarks have been made. 

2. Mathematical morphology on complete lattices 

Mathematical morphology was originally developed for binary images or, equivalently, for sets. The 

basic principles of this framework are set inclusion, intersection, union and translation. These concepts 

can be formalized by the notion of a complete lattice and invariance under an automorphism group of 

the lattice. To a certain extent classical morphology can be generalized to this abstract framework. 

Such a generalization was initiated by Matheron and Serra [14] and further developed by Heijmans 

and Ronse [8,12; see also 15]. Here we recall elements of this abstract theory which we will use in the 

sequel. For a comprehensive overview of the theory of complete lattices we refer to the monograph of 

Birkhoff [4] 

Definition 2.1. A complete lattice consists of a set .C and a partial order relation ~ on .C with the 

following properties. For each collection X; E .C, i E / there exist two elements X, X E .C such that: 

(i) foreachiE/wehaveX~X;~X. 

(ii) X; ~ Y for each i E / implies X ~ Y, for all YE .C. 

(iii) Z ~ X; for each i E / implies Z ~ X, for all Z E .C. 
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X and X are respectively called the supremum and the infimum of the family Xi, and are denoted as 

X = ViEl Xi and X = /\ieI Xi 

As mentioned before, an important example of a complete lattice is the power set P(V) of some set V , 

with the set inclusion as the order relation, and union and intersection as the supremum and infimum 

respectively. A second example which plays a prominent role in mathematical morphology is the space 

of functions mapping some underlying space V into a set g of grey-levels. The only requirement is 

that g is a complete lattice. This function space is denoted by gv and its partial order relation is 

given by/~ g if f(x) ~ g(x) for every x EV. The supremum and infimum of a collection of functions 

are then obtained by taking the pointwise supremum and infimum. 

The building blocks of mathematical morphology are dilation and erosion. These two notions are 

closely related and are defined on a complete lattice£, as follows: 

Definition 2.2. A mapping 8: £ - £ is called a dilation if 8(VierXi) = Vie 1 8(Xi) for any 

collection Xi E £, (i EI). A mapping c: £ - £ is called an erosion if c(/\ierXi) = /\ier E(Xi)· 

Dilations and erosions are increasing mappings. Recall that a mapping 'I/; on £, is called increasing if 

X ~ Y implies '1/;(X) ~ '1/;(Y) for any pair X, Y E £. Note the symmetry of these two definitions. 

We define the dual or opposite of a complete lattice(£,~) as the lattice (£', ~') with the opposite 

ordering, i.e. X ~, Y if X ~ Y. A mapping 'I/;:£, - £, which induces a dilation on£, similarly induces 

an erosion on £'. Dilation and erosion are therefore dual notions. 

Another important relation between dilations and erosions is the following. Let 8 and c be two 

mappings on a complete lattice£. The pair (c,8) is called an adjunction if 

for all X, Y E £. If (c , 8) is an adj unction it can be shown that 8 is a dilation and c is an erosion. 

Furthermore, to every dilation 8 there corresponds a unique erosion c such that ( c, 8) is an adj unction 

and vice versa. In this case c and and 8 are called adjoints. Let £, be the Boolean lattice P(V) 

for some set V. A dilation 8 is uniquely characterized by a mapping N : V - P(V) in the sense 

that 8 can be represented by 8(X) = Uxev N(x). Notice that one can obtain N from 8 by defining 

N ( x) = 8( { x} ). N is called a neighbourhood function. To a large extent this paper will be concerned 

with the construction of neighbourhood functions on the set of vertices of a graph. 

A mapping 'I/; : £, - £, is called a filter if 'I/; is increasing and idempotent, i.e., 'I/; = 'I/; o 'I/;. Two 

important types of filters are the anti-extensive ones ('1/;(X) ~ X for all X E £) which are called 

openings and the extensive ones (X :S '1/;(X) for all X E £) which are called closings. Just like 

dilations and erosions, openings and closings are dual notions. Futhermore, if (c, 8) is an adj unction, 

then c8 is a closing and 8c is an opening. 

3. Morphology on graphs: a summary of Vincent's work 

Hereafter the term "graph" will indicate an undirected graph without loops and multiple edges (also 

called 1-graphs ), unless it is stated otherwise. For a comprehensive exposition on graphs we refer to 



the monograph of Berge [2J. We denote the vertices of a graph G by V = V(G) and its edges by 

E = E( G) and we write G = (V, E). An edge between two vertices v, w is denoted by ( v, w ). The 

assumption that G is undirected is made explicit by the equality (v,w) = (w,v) for every edge (v,w) 
in E. We call w a ]-neighbour of v if (v,w) is an edge. Let G = (V,E) and G' = (V',E') be two 

graphs. G will be called a subgraph of G' if V ~ V' and E ~ E'. Note that the word 'subgraph' is 

generally used in a more restricted sense [2). A mapping (} : V -+ V' will be called a homomorphism 

from G to G' if(} is one-to-one and (v, w) E E implies that (9(v),9(w)) E E'. This will be denoted 

as G ..! G'. We often write 9v instead of 9(v). G and G' will be called homomorphic if there exists 

a homomorphism from G to G'. This will be denoted by G CG'. A homomorphism from G to G' 

which is onto (and is therefore a bijection) is called an isomorphism. The graphs G and G' are called 

isomorphic if they are related by an isomorphism. This will be denoted by G ~ G'. An isomorphism 

from the graph G to itself is called an automorphism or a symmetry of G. The collection of all 

symmetries of a graph G, denoted by Sym(G), forms a group called the symmetry group of G. The 

identity mapping id which ma.ps every vertex onto itself is always contained in Sym(G) and is called 

the trivial symmetry of G. The trivial symmetry is often the only element of Sym(G) (see Figure 1). 

6 
4 

1 2 
3 

i--4 
3 

FIGURE 1. The left graph only has the trivial symmetry. The symmetry group of the right 

graph contains (besides id) the mapping which interchanges the vertices 3 and 4. 

A graph is a mathematical structure that has a multitude of applications, e.g., cluster analysis and 

route planning. In this paper we study binary and multilevel ( = grey-level) functions defined on the 

set of vertices of this type of graphs. Thus we assume that a graph representation of an image is 

available and we will not address any aspects of image modelling. For reasons of simplicity we assume 

that there are only finitely many grey-levels, say 0, 1, ... , n - 1. A graph is called binary when n = 2. 

For a graph G = (V,E), Cn(G) denotes the space of all functions mapping V into {0,1, ... ,n -1}. 
The elements of Ln(G) are called multilevel graphs when n > 1. They are denoted by (f I G), where 

G denotes the underlying graph. The underlying graph will not be indicated when its identity is 

unambiguous. The elements of £ 2 (G) are called binary graphs. They can be represented by subsets 

of the vertex set V. We write £2(G) as £(G). Thus we have £(G) = P(V). The elements of this 

space will be denoted by (X I G). When there is no ambiguity we will omit the argument G. Let, 

for any graph G, 1/J(· I G) represent a mapping from Cn(G) into itself. Then 1j; is called a multilevel 

graph operator if n > 2 and a binary graph operator if n = 2. The multilevel graph operator 1j; is 

called increasing if 'lj,(J I G) :s; 1/J(f' I G) for any graph G and any two multilevel graphs f,f' E Cn(G) 
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for which f ~ f'. Increasingness for binary graph operators is defined analogously1 . In classical 

morphology (on the continuous Euclidean space IRd or the discrete space 7ld) it is well-known that 

any increasing operator on binary images can be extended to grey-level images by thresholding the 

original image at all grey-levels. The resulting operator on grey-level images is also increasing and 

is called a flat operator [7,13,15]. The same method can be used to extend increasing operators on 

binary graphs to multilevel graphs. We only give a brief sketch of the main ideas and refer to [7] for 

an extensive account. Every multilevel graph (/ I G) E Ln(G) corresponds in a unique manner to a 

sequence (X1(f) I G),(X2(/) I G), ... ,(Xn-1(/) I G) of binary graphs such that X1(/) 2 X2(/) 2 

... 2 Xn-1(/). Here Xi(/)= {v EV: f(v) ~ i}. From this sequence f can be recovered by means 

of the identity 

f(v) = max{i = l, ... ,n-1: v E Xi(/)}, 

where the maximum of the empty set is defined to be zero. Let 'ljJ(• I G) represent an increasing binary 

graph operator and let(/ I G) be a multilevel graph. We define 'ljJ(/ I G) as the function corresponding 

with the sequence 

Note that the nonincreasingness of this sequence follows from the increasingness of 'lj;. Alternatively 

we may define 

'ljJ(/ I G)(v) = max{i = l, ... ,n-1: v E 'ljJ(Xi(/) I G)}. 

In this paper we only consider increasing binary graph operators and their extension to multilevel 

graphs. 

A graph operator 'ljJ will be called G-increasing if 'ljJ increases in G, that is, 'lj;(X I G) ~ 'ljJ(X I G') 

for G ~ G' and X ~ V(G). G-decreasingness of 'ljJ is defined analogously. 

For a binary graph operator 'ljJ the dual operator 'ljJ* is defined by 

'lj;*(X I G) = ('ljJ(X* I G))* 

where X* = V \ X represents the complement of X with respect to the vertex set V. For (X* I G) 

we also write (X I G)*, thereby indicating that complementation does not affect the graph G. 

Let G = (V,E) represent an arbitrary graph and let N 1 (v) be the neighbourhood of vertex v 
defined as 

N1(v) = {w EV: (v,w) EE} U {v}. 

We define the dilation fl and the erosion € on ,C = P(V) respectively by 

vEX (3.1) 

c1(X I G) = {v EV: N1(v) ~ X}. 

1 Throughout this paper we write 'lj;( X I G) instead of 'ljJ( ( X I G) I G). 



7 

One may easily verify that (c:1,b't) defines an adjunction on£. An alternative expression for 61 is 

61(X I G) = {v EV: N1(v)nX f; 0}. (3.2) 

This relation is valid because the 1-neighbourhood is symmetric in the sense that v E N 1(w) iff 

w E N1(v). In Figure 2 we have depicted an example. The black and white vertices represent 

respectively X and its complement. 

FIGURE 2. The original binary graph X, its dilation 61(X) and its erosion c:1(X). 

Because c: and 6 are adjoints the composed mappings a = 6c: and <P = c:b' are respectively an 

opening and a closing. Their action is depicted in Figure 3. Again a and <P are dual notions in the 

sense that opening the foreground X leads to the same result as closing the background X* and vice 

versa. It is easy to show that v E a( X) if v has a neighbour w all of whose neighbours lie in X, that 
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is, N(w) ~ X. 

opening 

FIGURE 3. From left to right: the original binary graph X, its closing </>(X) and its opening 

a(X). 

It is obvious that o is G-increasing and that c is G-decreasing. However, the example in Figure 4 

clearly illustrates that a and</> are neither G-increasing nor G-decreasing. In this case G is a subgraph 

of both G' and G". However, a(X I G') is smaller than a(X I G) whereas a(X I G") is larger than 

a(X I G). In Section 6 we will discuss structural openings which have the property that they are 
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G-increasing. 

:J (l ► :J 
(XIG) 

:sJ (l 

► :sJ 
(XIG') 

□ 
(l 

► □ (XIG") 

FIGURE 4. The opening a is neither G-increasing nor G-decreasing: see text. 

Vincent (18,20,21] has shown that many of the classical morphological transformations ( distance 

function, geodesic operators, skeleton, watersheds, etc.) can be extended to binary or multilevel 

graphs. 

4. Neighbourhoods and structuring graphs 

The operators discussed in the previous section are not restricted to a particular graph but can be 

applied to any binary graph. Furthermore these operators are invariant under the symmetries of the 

graph, i.e., 

Here the symmetry r is considered as an operator on P(V) defined by rX = {rv : v E X}. In 

this paper we explain how to construct systematically a large family of dilations, erosions, openings 

and closings with the symmetry-preserving property. The underlying idea is borrowed from classical 

morphology where one probes the image with "simple" geometrical shapes called structuring elements. 

The resulting operators can be obtained by translation of the original image in combination with logical 

operands such as AND and OR. Here we introduce the concept of a structuring graph or S-graph, which 

is a graph with only a small number of vertices and edges and some additional structure. The idea is 

to construct morphological operators by 'matching' the S-graph at different positions with the binary 

graph that is to be processed. (N .B. In graph theory the word 'matching' is generally used in a different 

sense.) The implementation of the resulting operators is is an intricate task that differs considerably 
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from the classical case. Section 7 discusses some aspects of the implementation process. In this section 

we present a formal definition of an S-graph and show that this object determines a neighbourhood 

for every vertex in a graph. 

A structuring graph (or briefly, S-graph) A is a graph G.A = (V.A,E.A) together with two non­

empty subsets B.A, R.A ~ V.A called the buds and roots respectively. An example of a structuring 

graph is given in Figure 5. 

b 

C d 

a 

FIGURE 5. Example of a structuring graph with four vertices {a,b,c,d} and four edges. 

The buds a and b are denoted by black dots and the roots a and c by arrows. 

Nate that buds and roots may coincide and that the graph G .A need not be connected. In the sequel 

A indicates an S-graph, unless it is stated otherwise. 

Let A be an S-graph and let G = (V, E) be an arbitrary graph. Let(} be a homomorphism from 

G.A to G. Finally, let v EV. We call(} an embedding of A into G at v if v E O(R.A) (see Figure 6). 

FIG u RE 6. The homomorphism (} : G .A ---t G given by 8( a;) = v; ( i 
embedding of A into G at v1 . Furthermore, N..4(v1 I G) = {v2,v3,v4}. 

With the S-graph A we can now define the neighbourhood NA( v I G) of v as 

N.A(v I G) = LJ{O(B.A): (} is an embedding of A into G at v}. 

1, 2, 3) is an 

( 4.1) 
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Note that the reciprocal neighbourhood function of N1 defined in Section 3 is N1 itself. In the sequel 

we will show that the reciprocal mapping of a neighbourhood function N .A determined by some S­

graph A corresponds again with an S-graph. To obtain this result we first have to define the reciprocal 

S-graph. Let A be an S-graph. We define the reciprocal A of an S-graph A by G.). = G .A, B.). = R.A 

and R.). = B.A (see Figure 9). 

• ... 
J 

FIGURE 9. An S-graph A and its reciprocal A. 

Proposition 4.4. Let A be an S-graph and let A represent its reciprocal. Then we have 

JV .A ( V I G) = N .A ( V I G) 

for any graph G and every vertex v E V(G). 

PROOF. We only prove the inclusion ~. The other part of the assertion is obtained by taking the 

reciprocal of both terms. Let w E N.). ( v I G). Then v E N .A ( w I G) and there exists a homomorphism 

0 from G.A to G such that w E 0(R.A) and v E 0(B.A)- This implies that w E 0(B.A) and v E 0(R.A)­

Therefore w E N .A ( v I G). This concludes the proof. 

I 

5. Dilations and erosions 

Let A be an S-graph and let N .A be its corresponding neighbourhood function. Consider an arbitrary 

graph G. The binary graph operators b,A and €.A, given by 

vEX (5.1) 

c.A(X I G) = {v EV: N.A(v I G) ~ X}, 

for X ~ V = V(G), define respectively a dilation and an erosion on £(G) = P(V). We call b.A a graph 
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dilation and £.A a graph erosion. 

~ 

~ = structuring graph 

FIGURE 10. Dilation and erosion of a binary graph by a structuring graph. 

The pair (c.A(· I G),o.A(· I G)) forms an adjunction on the space .C(G). Furthermore both operators 

commute with the symmetries of the graph G. Thus, for X ~ V(G) and TE Sym(G), 

0.A( r X I G) = TO.A(X I G) 

E.A(TX I G) = TE.A(X I G). 

Recalling that 1/J* denotes the dual operator, we can state the following proposition. 

Proposition 5.1. For any S-graph A we have 

PROOF. We only prove the first relation. The second follows from duality. Let (X I G) represent a 

binary graph. In the rest of this proof we omit the argument G. Because y E N.A(x) iff x EN .A(Y) we 



11 

We call this set the A-neighbourhood of v in G. An example is presented in figure 7. One easily 

checks that for graphs without isolated vertices the neighbourhood function Ni (as used by Vincent 

[18,20,21]) can be obtained from the S-graph depicted in Figure 7. 

FIGURE 7. The structuring graph corresponding to the neighbourhood function Ni. 

The following lemma (which we need in the sequel) states that the A-neighbourhood of v in G 

is composed of subgraphs G' in G which contain v and are isomorphic to GA. 

Lemma 4.1. Let G be a graph and v one of its vertices, then 

N.,4(v I G) = LJ{N.,4(v I G'): G' ~ G, G' ~ G.,4, v E V(G')}. 

PROOF. The inclusion 2 is trivial. Therefore we only prove~- Suppose w E NA(v I G). Then there is 

an embedding O of A in G at v such that w E O(BA)- Hence G' = O(GA) satisfies G' ~ G, G' ~ GA, 

v E V(G') and w E NA(v I G'). 

I 

From the definition of the neighbourhood NA it is evident that its cardinality depends upon three 

factors (which are related to some extent): 

(i) the "amount" of structure in A; this depends upon the underlying graph GA, 

(ii) the bud set B.,4; a larger set BA induces larger neighbourhoods NA (for fixed G.,4), 

(iii) the root set RA; an S-graph is progressively easier to embed if the number of its roots increases, 

therefore NA increases with the number of roots (for fixed GA)-

We will now define a partial order ~ on the set of all S-graphs which corresponds to an ordering on 

dilations. Let Ai, A2 be two S-graphs. We define Ai ~ A2 if N Ai ( v I G) ~ N A 2 ( v I G) for any graph 

G and v E V( G). In this case Ai is called more selective than A2. If Ai ~ A2 and A2 ~ Ai then Ai 
and A2 are equivalent and we write Ai = A2. 
N.B. Strictly speaking,~ only defines a partial ordering if the equivalence classes associated with the 

equivalence relation = are considered. 

Proposition 4.2. Ai ~ A2 if and only if 

(i) GA2 C GAi, 

(ii) N.,41(v I G.,41) ~ NA2(v I G.,41), for any VE v.A1· 
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PROOF. "only if": let A1 ~ A2. We now show that G .A2 C G ...4 1 • The second part of the assertion 

follows from the definition by taking G = G...4 1 • Let v E R...4 1 • Then N...4 1 (v I G) 2 B...4 1 since id is an 

embedding of A1 in G...4 1 at v. Similarly N...42 (v I G...4 1 ) ,j; 0. Therefore, there must be an embedding 

of A2 in G...4 1 (at v), i.e., G...4 2 CG.Ai· 

"if": first we note that if G' ~ G...4 1 and v E V(G') then 

From Lemma 4.1 we get 

N...4 1 (v I G) = LJ{N...4 1 (v I G'): G' ~ G, G.A 1 ~ G', v E V(G')} 

This finishes the proof. 

(a) 

(b) 

~ LJ{N...4 2 (v I G'): G' ~ G, G.,A 1 ~ G', v E V(G')} 

~ LJ{N.A2 (v I G'): G' ~ G, v E V(G')} 

= N...4 2 (v I G). 

... Iv__ 

FIGURE 8. Illustration of (a) the partial order, and (b) equivalence. 

From Proposition 4.2 we directly obtain the following result. 

I 

Corollary 4.3. A1 = A2 if and only if G.A 1 ~ G.A2 and N...4 1 (v I G...4 1 ) = N...4 2 (v I G..4 1 ) for any 

V f VA1· 

The A-neighbourhood of a vertex v depends on the local structure of G near v. Moreover, it is 

invariant under symmetries of the graph (which is easily deduced from its definition): 

(4.2) 

for any T E Sym(G). We conclude this section with some remarks on the reciprocal neighbourhood 

function. Let N : V -+ P(V) be some neighbourhood function. Then the reciprocal mapping N : 
V -+ P(V) is defined by 

N(v) = {w EV: v E N(w)}. (4.3) 
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Proposition 6.1. For every S-graph A, the graph operator a,,4 is a symmetry-preserving opening 

which is G-increasing 

The opening a,,4 is called a structural opening. 

y 

~ - structuring graph 

closi 

FIGURE 13. Structural closing and opening of a binary graph. 

The binary graph (X I G) is invariant if there exists a homomorphism from GA into G such that 

v E B(BA) for every vertex v E X. With every binary graph (X I G) we can associate a structuring 

graph A = A(X I G) by taking G,,4 = G, B,,4 = X, R,,4 = V. In fact we may choose any (nonempty) 

subset of V,,4 = V for R,,4; for reasons of simplicity we have choosen R,,4 = V. 

The class of all invariant graphs is called the invariance domain of a,,4 and is denoted by lnv(a,,4). 

For convenience we assume that the invariance domain of an operator 7/J consists of all S-graphs 

associated with the binary graphs which are invariant under 7/J: 

lnv('lj;) = {A(X I G): 7/J(X I G) =(XI G)}. 

We now prove the following characterization of symmetry-preserving graph operators. 
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Proposition 6.2. Let o be a symmetry-preserving graph opening which is G-increasing. Then o 

can be decomposed as 

o = LJ O,A • 

.Aelnv(o) 

PROOF. We define cl= U.Aelnv(o) O,A. 

o' ~ o: let (X I G) be a binary graph and define A E lnv(o) as A:= Ao(X I G), i.e., A is the S-graph 

corresponding with the binary graph o(X I G). Then it is easily seen that o.A(X I G) ~ o(X I G), 

and therefore o'(X I G) ~ o(X I G). 

a' :Sa: let (XI G) be a binary graph and A E lnv(o). By definition 

Since O(B.A) ~ X we get that o(O(B.A) I G) ~ a(X I G). By the G-increasingness of a we get that 

a(O(B.A) I O(G.A)) ~ a(X I G). Since (B.A I G.A) is invariant, this yields that O(B.A) ~ o(X I G) 

whence it follows that a.A(X I G) :S a(X I G), and hence that o' :S a. 

I 

We say that the binary graph (X I G) is A-open if o.A(X I G) = (X I G). Let A, B be two S-graphs. 

We will examine under what conditions a B-open graph is also A-open or, equivalently, 

It is obvious that this can only be true if the binary graph ( BB I GB) corresponding to the S-graph B 

is A-open. It turns out that this condition is also sufficient. 

Proposition 6.3. The equalities O.AOB = OBa.A = OB hold if and only if(BB I GB) is A-open. 

PROOF. The "only if"-statement is trivial. Therefore we only prove the "if"-part. Suppose (BB I GB) 

is A-open. Hence, for every b E B 8 there is an embedding ()b: G.A-+ GB and an ab EB.A such that 

We assume that x E oB(X I G). Then there is an embedding(): GB-+ G and ab E BB such that 

Using the abovementioned fh we construct an embedding fJ o (Jb : G .A -+ G such that 

Therefore we have x E o.A(X I G). Thus we have shown that OB :S O,A. This implies 0'808 ~ O'.A08 ~ 

OB. Because aB is idempotent this is equivalent to O.AOB = OB. Since 08 is increasing we also have 

0808 :S oBa.A :S oB or o.AoB = OB. 

I 
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have 
t5A(X I G) = [ u N.A(x)r = n {y EV: y ¢ NA(x)} 

I 

Note that these results are analogous to the classical case. However, many other results from clas­

sical morphology have no graph theoretical analogues. For example, dilations ( or erosions) with two 

different structuring graphs generally do not commute ( see Figure 11 ). 

A ✓ 

X --<1 

FIG u RE 11. Two dilations which do not commute. 

In classical morphology (on P(IR,d)) the composition of two dilations with structuring elements A 

and B is again a dilation with a (larger) structuring element: (X EB A) EB B = (X EB B) EB A = 

X EB (A EB B) = X EB C, where C = A EBB. In graph morphology the composition of two dilations 

with structuring graphs A and Bis also a dilation. However, there is not always a (larger) S-graph C 

such that <5.A o <5 8 = '5c. In classical morphology Matheron's theorem [9,13] states that any increasing 

translation invariant operator can be decomposed as a union of erosions, or dually, as an intersection 

of dilations. It would be useful to have a similar theorem for increasing, symmetry-preserving graph 

operators in graph morphology. However, the following example shows that there is no such analogue. 

Example 5.2. Consider the graph operator 1/J(· I G) defined as follows. The set 1/J(X I G) consists 

of all vertices v E V(G) which have at least one 1-neighbour in X. Assume that 1/J can be written as 

'ljJ = u €.A, 

AE'E 
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for some collection :E of S-graphs. Let G be the graph depicted in Figure 12 with vertices u, v, w. In 

the following we omit the argument G. 

w 

b. 
u 

FIGURE 12. See text. 

For any A E :E the associated neighbourhood of each of the three vertices is nonempty. Since 

-ip({u}) = {v,w}, there is an A E :E such that v E c.A({u}), that is N.,4(v) ~ {u}. Since N.A(v) may 

not be empty, we find that N.,4(v) = {u}. However, by symmetry arguments, u E N.,4(v) iff w E N.,4(v), 

which is a contradiction. This implies that -ip cannot be written as a union of erosions. 

As we already observed in Section 3, any increasing binary graph operator can be extended to multilevel 

graphs in a unique way. The following explicit expressions can be deduced for the multilevel extensions 

of the dilation and erosion that were introduced in this section: 

6.,4(! I G)(v) = sup{f(w): w E N.).(v I G)} 

c:.,4(! I G)(v) = inf{f(w): w E N.,4(v I G)}. 

6. Openings and closings 

In mathematical morphology openings and closings form dual notions. In this section we will mainly 

deal with openings. However, in Remark 6.5 we indicate a major difference between structural closings 

in classical morphology and their analogues in graph morphology. 

There are at least two different ways to construct openings on binary (and multilevel) graphs. 

The first way is to compose an erosion €.A and its adjoint dilation 6.,4. The resulting operator 6.,4£.,4 

is an opening. In classical morphology it is easy to prove that every (translation-invariant) opening 

can be obtained as a union of these elementary openings. But this fact is not true for all complete 

lattices as was first noted by Ronse and Heijmans [12]. They introduced the concept of a structural 

opening and showed that these openings are elementary in the sense that they constitute a base for all 

openings. In the sequel we will show that the same holds for structural openings in graph morphology. 

At the end of this section we present an example which shows that there are (structural) openings 

which can not be constructed from openings of the form 0.,4€.,4. 

Let A be an S-graph. We define the graph operator 0:.,4 by 

Note that the roots of A play no role in this definition. One can easily prove that 0:.,4 is indeed an 

opening. 
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In classical morphology the identity a.,t = 6.,tc.A holds. In graph morphology we only have the 

inequality 

(6.1) 

To show this let v E 6.,tc.,t(X I G) for some binary graph (X I G). Then v E N.,t(w I G) for some 

w E c.,t(X I G). But then v E N.,t(w I G) ~ X. This implies that there exists an embedding() of G.,t 

in G at w such that v E O(B.A) ~ X. Thus, by definition, v E a.A(X I G). 

Below we shall give an example which shows that the class of openings 6.,tc.A is too restrictive to 

build every symmetry-preserving opening. 

Example 6.4. Let B be the S-graph depicted in Figure 14(a) and let a:= as. Consider the graph 

G depicted in Figure 14(b) with vertices a,b,c,d. There are eight possibilities for the neighbourhood 

N.A(a) = N.A(a I G). Note that the neighbourhoods of b,c,d can be obtained from N.,t(a) by symmetry. 

• • d' 
(a) (b) a b 

\4 Jtt' ? I-- rltt' ? C ? • (c) 
511 512 513 514 515 516 517 51g 

FIGURE 14. See text. 

The eight possible neighbourhoods are listed as N1(a),N2(a), ... ,N8 (a). For each case we give an 

example of an S-graph A; for which N.A;(a I G) = N;(a), i = 1,2, ... ,8 (see Figure 14(c)). Note that 

A; is not unique and that our choice is in fact arbitrary. We denote the opening 6.A;€.A; by a;. For the 

first three neighbourhoods we can give explicit expressions for the corresponding openings a;. The 

fourth neighbourhood corresponds to Vincent's construction as described in Section 3. 

N1(a) = 0; a1(X) = 0 for any X . 

N2(a) = {a}; 02 = id. 

N3(a) = {a,b,c,d}; a3(X) = 0 if X-:/ V and a3(V) = V. 

N4(a) = {a,b,d}. 

Ns(a) = {b, d}. 

N6(a) = {b,c,d}. 

N1(a) = {c}. 

Ns(a) = {a,c}. 
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Assume that the opening a= OB can be written as a union of openings of the form 0A€A· Then there 

must he a subset I~ {l, 2, ... , 8} such that 

a(X) = LJ ai(X) (6.2) 
iEI 

for any X ~ {a,b,c,d} (the argument G is omitted). First we take X = {a,c}. Then a(X) = 0. Since 

a2(X) = a 5(X) = a1(X) = a8 (X) = X we conclude that 2,5, 7,8 (/. I. Next we take X = {a,b}. 

In this case a(X) = X and a 1(X) = o 3 (X) = a 4(X) = a6 (X) = 0. The combination of these facts 

yields a contradiction to (6.2). This shows that the structural opening a cannot he written as a union 

of openings of the form '5AcA. 

Remark 6.5. On the binary image space P(IRd) the definition of a translation-invariant structural 

opening with A as a structuring element is given by: 

aA(X) = LJ{Ah : h E m,d, Ah~ X}. 

Dually, the structural closing by A is given by 

<PA(X) = n{Ah: h E m,d , Ah~ X}. 

Between aA and ¢>A there is the following duality relation [12]: 

<PA(X) = [aA• (X*))*, 

(6.3) 

(6.4) 

(6.5) 

where* denotes set complementation. In graph morphology there is no apparent analogue of definition 

(6.4) of a structural closing. Therefore we resort to formula (6.5). When we ignore the complementa­

tion of A in this formula, we can define the structural closing ¢>A by the S-graph A as 

(6.6) 

or alternatively 

<PA(X I G) = n{V \ O(BA): GA!+ G, O(BA) n X = 0}. 

An example is presented in Figure 13. Note that a structural closing is G-decreasing. Using Proposi­

tion 6.2 it is easy to show that every graph closing¢> which is symmetry-preserving and G-decreasing 

can be written as an intersection of structural closings <PA· More precisely, 

</>= n <PA· 
.Aelnv(,p•) 

Using inequality (6.1) and Proposition 5.1 it can be shown that 

<PA~ €.,40.,4. 

The theory of morphological filters on complete lattices was initiated by Matheron [14, Section 6]. His 

results can directly be applied to graph morphology. In a companion paper we will present detailed 

examples of morphological filters on graphs. Here we only give a simple example. An increasing 

operator 'ljJ is called an inf-over-filter if 1/J(id /\ 1/J) = 'ljJ (see [14]). If 'ljJ is an inf-over-filter then id/\ 1/J 

is an opening. Let '51 and '52 be two dilations with '51 ~ '52. If c1 is the adjoint of '51, then '52c1 is an 

inf-over-filter. In this case id/\ '52c1 is an opening. This general result has the following application in 

graph morphology. When A, B are two structuring graphs with A ~ B, then id/\ OBEA is an opening. 
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7. Notes on implementation 

The implementation of morphological transformations on graphs involves the choice of appropriate 

data structures. These data structures should 

1. enable the flexible encoding of a vast variety of graphs, 

2. allow the efficient computation of morphological graph transformations. 

An appropriate data structure is derived from the adjacency matrix [6, chapter 1]. It belongs to the 

family of vertex codings and is essentially an array VERT of vertices. Each of these vertices has some 

attributes (e.g. its coordinates and its value) as well as a pointer ptr towards its neighbours. These 

neighbours are stored in a second array, called NEIGH_VERT, which contains only pointers to elements 

of VERT. The neighbours of the n-th vertex VERT[n] can be retrieved by considering the pointers: 

NEIGH_VERT[i], for i = ptr(VERT[n]) to ptr(VERT[n + l]) - 1. 

This data structure, which is described in more details in [20] and [21, pp. 95-98], is illustrated by 

Figure 15. 

Vertices 

FIGURE 15. Data structure used for representing graphs and transforming them morpho­

logically. 

It provides direct access to the neighbours of a given vertex. This feature is essential in graph 

morphology. Moreover, this data structure is very general in the sense that it can represent any 

kind of graph (e.g. non-planar graphs and oriented graphs). Thus, it has all the abovementioned 

required properties. The complexity of the morphological transformations is directly related to both 

the structure of the S-graph and the structure of the graph that is to be transformed. We now 

consider two different cases. First we assume that the graphs that are transformed have no isolated 

vertices and that the S-graph of Figure 7 is used. In this case the erosions, dilations, openings and 

closings described in this paper are simply the "classical" ones (see Section 3). Hence, they reduce 
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to simple neighbourhood operations ( and so do many other transformations like distance function, 

geodesic transformations, skeletons, watersheds, etc; (18,19,201). They can be efficiently implemented 

by algorithms based on queues of vertices (21, chapters 2 and 5]. 

For arbitrary structuring graphs the implementation becomes more complex. Let A be an ar­

birary structuring graph and let G be the binary or multilevel graph to be transformed. For every 

morphological operation one has to determine the set N .A ( vlG) of associated neighbours of each vertex 

v. Therefore, the first step of all morphological operations is the construction of an oriented graph 

G.A = (V, E.A ), such that: 

E.A = {(v,w) EV x VI w E N.,4(v I G)}. 

Note that the operations described in the previous sections can also be interpreted as morphological 

transformations of oriented graphs. For example, Figure 16 represents the oriented graph GA derived 

from G by means of the S-graph A. 

¾ ~ructuring graph 

0 

⇒ 

0 

G G 
j1 

FIGURE 16. Oriented graph GA derived from G. 

We now consider the computation of the oriented graph GA. According to the definition of the 

neighbourhood function NA in ( 4.1 ), we have to determine for each vertex v E V the union of the 

0(BA) for all embeddings 0 of A into G at v. In other words, we have to determine all the possibilities 

to ''fit" A in G such that one of the roots of A is located at v. Here, we will only focus on "small" 

S-graphs A, since the use of large graph structures is probably not of practical interest. Moreover, 

the use of large structuring graphs results in extremely complex and time consuming algorithms. 

Therefore we consider S-graphs A= (VA, E.A, BA, R.A) "of size one", i.e.: 

This definition states that an S-graph has size one if every vertex v E VA is a neighbour of all the roots. 

A dilation on a binary or multilevel graph G with an S-graph is equivalent to taking the supremum 
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(union for binary graphs) over r E R.,4 of the dilations of G with the S-graphs Ar = (VA, E.,4, B.,4, { r} ). 

Similar relations can be proved for erosions. In the sequel we will only consider S-graphs of size one 

with a single root (see Figure 17.). 

⇒ 

FIGURE 17. An S-graph A of size one and one of the S-graphs that can be derived from 

it by suppressing all its roots but one. Note that A and Ar are not equivalent. 

Let A be a structuring graph of size one such that R.,4 = {r}. An edge of E.,4 with r as one of its 

extremities is called a radial edge. All other edges are called transversal edges ( see Figure 18). 

_ - - transversal edge 

radial edge - - __ 

FIGURE 18. Radial and transversal edges of an S-graph of size one with a unique root. 

We denote by EA the set of the radial edges of A and by E~ the set of its transversal edges. The 

outline of the algorithm for computing GA is as follows (the symbol +-- denotes assignment): 
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• if E~ = 0 ( no transversal edges): 

for each vertex v E V do: 

• N.,1.(v)+-0; 

• if card(N1(v)) > card(E.A) then 

- if B.A \ {r} -:J 0 then N.A(v) +- {w EV: (v,w) EE}; 

- ifr E B.,1. then N.A(v) +- N.A(v) U {v}; 

• otherwise 

for each vertex v E V do: 

• N.A(v) +- 0; 
• if card( N1 ( v)) > card( E.'.:.t) then 

for every embedding fJ of A into G at v (exhaustive search): 

NA(v) +- NA(v) U fJ(B.,4); 

In the last case all possible fits have to be computed. This slows down the procedure considerably. 

However, the computational speed is still acceptable since the number of transversal edges of A is 

generally quite small. 

8. Final remarks 

Note that there is a striking difference between the effects of "classical" transformations (see Section 3) 

and the effects of transformations with arbitrary structuring graphs. For example, consider the dilation 

and erosion of the binary graph shown in Figure 10. This example demonstrates that the dilation is not 

necessarily extensive and, consequently, that the erosion is not necessarily anti-extensive. Furthermore, 

the number of 1-vertices (i.e. vertices with value 1) of the dilated graph is smaller than that of the 

eroded graph! (Note that similar phenomena may occur for "classical" dilations and erosions if the 

origin is not contained in the structuring element.) However, an extensive dilation 6 can be constructed 

from a dilation through an S-graph A by taking the supremum of CA and the identity mapping: 

The same procedure can be used to obtain an anti-extensive erosion£ from £A: 

£ = idA£A· 

It can be shown that(£, 6) is again an adjunction which is symmetry-preserving (7). The morphological 

operations with structuring graphs have a global effect. For example, the binary erosion may attribute 

the value 1 to vertices with value O that are arbitrarily far away from any original I-vertex (see 

Figure 10). As already noted in the introduction, this effect arises because the S-graph has to match 

the underlying graph structure G, which is generally non-periodic ( contrary to the digital grid). 
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Graph morphology was only recently developed. We expect that this theory will be useful for 

many fields of research. It has already been successfully applied to the study of crack propagation in 

porous materials [23]. It also provides new tools for the description of object population architectures. 

Here the relationships between objects are first modelled by a neighbourhood graph such as the De­

launay triangulation [11, Section 5.5], the Gabriel graph [5] or the relative neighbourhood graph [16]. 

Each object is characterized by a certain number of symbolic or numerical parameters. The result­

ing binary or multilevel graphs are morphologically transformed to obtain quantitative information 

about the neighbourhood relationships between the objects. Granulometries on graphs are the most 

promising tools for this purpose. When special neighbourhood configurations are of interest, these 

transformations should be combined with operations using S-graphs. At the moment research is being 

done to investigate how these transformations can be applied to the description of cell population 

architectures ([20] and [21, Section 5.5]). 

Graph morphology can also be used to construct hierarchical image descriptions. It has already 

been suggested to use classical morphology in the construction of hierarchical image representations 

[10]. A hierarchical graph representation of an image can be obtained by repeated application of 

morphological filters to the adjacency graph that represents the neighbourhood relations between the 

parts of a segmented image. Vincent [21, Chapter 8] introduced a region-merging method based on 

the watershed transformation on a neighbourhood graph. His results show that the regions that are 

obtained by this method adapt well to the local image structure [19]. The information that is extracted 

at each level of abstraction, (i.e. at each step in the merging process) depends on the S-graph that is 

used. 

Mathematical morphology is well suited for image segmentation. An existing approach is based 

on the watershed transformation and uses markers to indicate the regions that are to be extracted 

[22]. However, it is not always possible to determine markers automatically. In such cases it may be 

useful to transform the image into a neighbourhood graph (representing adjacent regions or adjacent 

contour elements) and to do all further processing directly on this graph. Bencher [3] already applied 

this idea without explicitly resorting to morphology on graphs. We expect that the combination of 

this approach and the S-graph transformations introduced in this paper will result in powerful image 

segmentation methods. This is presently investigated in a computing environment that was obtained 

by linking the Morphograph package [17] to the TCL- IMAGE image processing software [1]. 
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