167 research outputs found

    Propagation of acoustic wave’s motion in orthotropic Cylinders of infinite length

    Get PDF
    We report, in the present work, a numerical method for investigating guided waves propagation in a homogeneous infinite cylinder composed of elastic material. This method makes use of Legendre polynomials series and harmonic function to express different displacement components which are introduced into the equation of motion. The advantage of this method is the possibility to incorporate the stress-free boundary conditions directly into the equations of motion by assuming position-dependent elastic constants and mass density. The solution of the wave equations can be reduced to an eigenvalue problem. Numerical results are presented and compared with those published earlier in order to validate our polynomial approach. For certain specific modes, dispersion curves and field profiles such as mechanical displacements, normal stresses are presented. The developed software is capable of dealing efficiently and accurately with a variety of homogeneous and inhomogeneous cylinders

    On Brane Inflation Potentials and Black Hole Attractors

    Full text link
    We propose a new potential in brane inflation theory, which is given by the arctangent of the square of the scalar field. Then we perform an explicit computation for inflationary quantities. This potential has many nice features. In the small field approximation, it reproduces the chaotic and MSSM potentials. It allows one, in the large field approximation, to implement the attractor mechanism for bulk black holes where the geometry on the brane is de Sitter. In particular, we show, up to some assumptions, that the Friedman equation can be reinterpreted as a Schwarzschild black hole attractor equation for its mass parameter.Comment: 12 pages. Reference updated and minor changes added. Version to appear in Int. J. Mod. Phys.

    Genetic and nongenetic effects on the number of ovarian follicles and oocyte yield and quality in the bovine local (Oulmes Zaer), exotic breeds and their crosses in Morocco

    Get PDF
    The effects of genetic and non genetic factors on the number of ovarian follicles and oocyte yield and quality in the bovine local breed (Oulmes Zaer), exotic breeds and their crosses in Morocco was investigated. In this study, females in very bad body conditions (BCS < 2) were not slaughtered and the average. The body condition scores (BCS) was 2.94 ± 0.89. Although some individual values were out of the normal ranges, mean values of total proteins, albumin, urea, &#946;-OH and GOT remain normal and were 77.83 ± 8.74 g/l, 32.4 ± 4.41g/l, 4.43 ± 2.13 mmol/l , 0.83± 0.48 mmol/l et 45.55 ± 11.95 UI/l, respectively. The mean number of ovarian follicles per cow (2-8 mm) was high (22.98 ± 8.41) whereas the oocyte yield (and 2.60 ± 1.53) was very low. The effects of genetic group, age and BCS on the number of follicles, oocyte yield and the quality were significant. Key Words: Cows, follicular population, oocyte yield and quality. African Journal of Biotechnology Vol.4(1) 2005: 9-1

    Diameter dependence of the optoelectronic properties of single walled carbon nanotubes determined by ellipsometry

    No full text
    International audienceWe report ellipsometric measurement on single walled carbon nanotube (SWCNT) films performed in a large spectral range from 0.07eV to 4.97eV. The complex dielectric functions of SWCNTs are correlated to their diameter distribution extracted from transmission electron microscopy. Here we show that the transition energies between Van Hove singularities are directly related to the strong one dimensional confinement. In the infrared spectral range, the real part of the dielectric function becomes negative. The electronic properties of SWCNTs are extracted from ellipsometry by using a Drude model. The mobility and the mean free path of charge carriers are limited by the high number of SWCNT contacts. In accordance with tight binding simulation, the conductivity and the charge carrier concentration increase with the SWCNT diameter. Finally, we demonstrate that the S-plasmon energy depends on the charge carrier concentration.

    Recent colonization of the Galápagos by the tree Geoffroea spinosa Jacq. (Leguminosae)

    Get PDF
    This study puts together genetic data and an approximate bayesian computation (ABC) approach to infer the time at which the tree Geoffroea spinosa colonized the Galápagos Islands. The genetic diversity and differentiation between Peru and Galápagos population samples, estimated using three chloroplast spacers and six microsatellite loci, reveal significant differences between two mainland regions separated by the Andes mountains (Inter Andean vs. Pacific Coast) as well as a significant genetic differentiation of island populations. Microsatellites identify two distinct geographical clusters, the Galápagos and the mainland, and chloroplast markers show a private haplotype in the Galápagos. The nuclear distinctiveness of the Inter Andean populations suggests current restricted pollen flow, but chloroplast points to cross-Andean dispersals via seeds, indicating that the Andes might not be an effective biogeographical barrier. The ABC analyses clearly point to the colonization of the Galápagos within the last 160 000 years and possibly as recently as 4750 years ago (475 generations). Founder events associated with colonization of the two islands where the species occurs are detected, with Española having been colonized after Floreana. We discuss two nonmutually exclusive possibilities for the colonization of the Galápagos, recent natural dispersal vs. human introduction.Fil: Caetano S.. No especifíca;Fil: Currat M.. Universidad de Ginebra; SuizaFil: Pennington, R. T.. Royal Botanic Gardens; Reino UnidoFil: Prado, Darien Eros. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Departamento de Biología. Cátedra de Botánica Morfológica y Sistemática Agronómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Excoffier L.. University of Bern; SuizaFil: Naciri, Y.. No especifíca

    Photocatalytic oxidation of pollutants in gas-phase via Ag3PO4-based semiconductor photocatalysts: Recent progress, new trends, and future perspectives

    Get PDF
    Air pollution has become a significant challenge for both developing and developed nations. due to its close association with numerous fatal diseases such as cancer, respiratory, heart attack, and brain stroke. Over recent years, heterogeneous semiconductor photocatalysis has emerged as an effective approach to air remediation due to the ease of scale-up, ready application in the field, use of solar light and ready availability of a number of different effective photocatalysts. To date, most work in this area has been conducted using UV-absorbing photocatalysts, such as TiO2 and ZnO; However, recent studies have revealed Ag3PO4 as an attractive, visible-light-absorbing alternative, with a bandgap of 2.43 eV. In particular, this material has been shown to be an excellent photocatalyst for the removal of many types of pollutants in the gas phase. However, the widespread application of Ag3PO4 is restricted due to its tendency to undergo photoanodic corrosion and the poor reducing power of its photogenerated conductance band electrons, which are unable to reduce O2 to superoxide •O2−. These limitations are critically evaluated in this review. In addition, recent studies on the modification of Ag3PO4 via combination with the conventional heterojunctions or Z-scheme junctions, as well as the photocatalytic mechanistic pathways for enhanced gas-pollutants removal, are summarized and discussed. Finally, an overview is given on the future developments that are required in order to overcome these challenges and so stimulate further research into this promising field

    Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications

    Get PDF
    ecent achievements in the area of tissue engineering (TE) have enabled the development of three-dimensional (3D) cell-laden hydrogels as in vitro platforms that closely mimic the 3D scenario found in native tissues. These platforms are extensively used to evaluate cellular behavior, cell-cell interactions, and tissue-like formation in highly defined settings. In this study, we propose a scalable and flexible 3D system based on microsized hydrogel fibers that might be used as building blocks for the establishment of 3D hydrogel constructs for vascularized bone TE applications. For this purpose, chitosan (CHT) coated κ-carrageenan (κ-CA) microfibers were developed using a two-step procedure involving ionotropic gelation (for the fiber formation) of κ-CA and its polyelectrolyte complexation with CHT (for the enhancement of fiber stability). The performance of the obtained fibers was assessed regarding their swelling and stability profiles, as well as their ability to carry and, subsequently, promote the outward release of microvascular-like endothelial cells (ECs), without compromising their viability and phenotype. Finally, the possibility of assembling and integrating these cell-laden fibers within a 3D hydrogel matrix containing osteoblast-like cells was evaluated. Overall, the obtained results demonstrate the suitability of the microsized κ-CA fibers to carry and deliver phenotypically apt microvascular-like ECs. Furthermore, it is shown that it is possible to assemble these cell-laden microsized fibers into 3D heterotypic hydrogels constructs. This in vitro 3D platform provides a versatile approach to investigate the interactions between multiple cell types in controlled settings, which may open up novel 3D in vitro culture techniques to better mimic the complexity of tissues.Authors thank the Portuguese Foundation for Science and Technology (FCT) for the personal grants SFRH/BD/42968/2008 through the MIT-Portugal Program (SMM) and SFRH/BD/64070/2009 (EGP). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS and MIT/ECE/0047/2009 project

    Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea

    Get PDF
    The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments

    Choosing and Using a Plant DNA Barcode

    Get PDF
    The main aim of DNA barcoding is to establish a shared community resource of DNA sequences that can be used for organismal identification and taxonomic clarification. This approach was successfully pioneered in animals using a portion of the cytochrome oxidase 1 (CO1) mitochondrial gene. In plants, establishing a standardized DNA barcoding system has been more challenging. In this paper, we review the process of selecting and refining a plant barcode; evaluate the factors which influence the discriminatory power of the approach; describe some early applications of plant barcoding and summarise major emerging projects; and outline tool development that will be necessary for plant DNA barcoding to advance

    Genetic diversity in the Andes:variation within and between the South American species of <i>Oreobolus</i> R. Br. (Cyperaceae)

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.This study examines genetic relationships among and within the South American species of Oreobolus that span the temperate and tropical Andes hotspots and represent a good case study to investigate diversification in the Páramo. A total of 197 individuals covering the distributional range of most of these species were sequenced for the nuclear ribosomal internal transcribed spacer (ITS) and 118 individuals for three chloroplast DNA regions (trnL-F, trnH-psbA and rpl32-trnL). Haplotype networks and measures of genetic diversity were calculated at different taxonomic and geographic levels. To test for possible geographic structure, a spatial analysis of molecular variance (SAMOVA) was undertaken and species relationships were recovered using a coalescent-based approach. Results indicate complex relationships among the five South American species of Oreobolus, which are likely to have been confounded by incomplete lineage sorting, though hybridization cannot be completely discarded as an influence on genetic patterns, particularly among the northern populations of O. obtusangulus and O. cleefii. We report a case of cryptic speciation in O. obtusangulus where northern and southern populations of morphologically similar individuals are genetically distinct in all analyses. At the population level, the genetic evidence is consistent with contraction and expansion of islands of Páramo vegetation during the climatic fluctuations of the Quaternary, highlighting the role of these processes in shaping modern diversity in that ecosystem.This work was funded by a School of Biological Sciences Scholarship provided through The University of Edinburgh. We thank the herbaria at Aarhus University, (Denmark), Naturalis (The Netherlands) and Reading University (Great Britain) for making material available for DNA extraction. We also thank three anonymous reviewers for their valuable comments and James Nicholls from The University of Edinburgh for assistance with the *BEAST analysis
    corecore