

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Genetic diversity in the Andes

Citation for published version:

Gómez-Gutiérrez, MC, Pennington, RT, Neaves, LE, Milne, RI, Madriñán, S & Richardson, JE 2017, 'Genetic diversity in the Andes: variation within and between the South American species of Oreobolus R. Br. (Cyperaceae)' Alpine Botany, vol. 127, no. 2, pp. 155-170. DOI: 10.1007/s00035-017-0192-z

Digital Object Identifier (DOI):

10.1007/s00035-017-0192-z

Link: Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Alpine Botany

Publisher Rights Statement:

© Swiss Botanical Society 2017 The final publication is available at link.springer.com via http://dx.doi.org/10.1007/s00035-017-0192-z

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

 ±

1 GENETIC DIVERSITY IN THE ANDES:

2 VARIATION WITHIN AND BETWEEN THE

3 SOUTH AMERICAN SPECIES OF OREOBOLUS 4 R. Br. (CYPERACEAE)

- 5 María Camila Gómez-Gutiérrez^{1,2}, R. Toby Pennington¹, Linda E. Neaves^{1,3}, Richard
- 6 I. Milne², Santiago Madriñán⁴ and James E. Richardson^{1,5,†}
- ⁷ ¹ Tropical Diversity Section, Royal Botanic Garden Edinburgh, 20A Inverleith Row,
- 8 Edinburgh, EH3 5LR, United Kingdom
- 9 ² Institute of Molecular Plant Sciences, School of Biological Sciences, The
- 10 University of Edinburgh, Daniel Rutherford Building, The King's Buildings,
- 11 Edinburgh, EH9 3BF, United Kingdom.
- ³ Australian Centre for Wildlife Genomics, Australian Museum Research Institute,
- 13 Australian Museum, 1 William Street, Sydney 2010, Australia.
- ⁴ Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas,
- 15 Universidad de los Andes, Carrera 1 No. 18A 10, Bogotá, Colombia.
- ⁵ Programa de Biología, Universidad del Rosario, Carrera 26 No. 63B 48, Bogotá,
- 17 Colombia.
- 18 [†]Corresponding author, email: jamese.richardson@urosario.edu.co

19 ABSTRACT

20	This study examines genetic relationships among and within the South American
21	species of Oreobolus that span the temperate and tropical Andes hotspots and
22	represent a good case study to investigate diversification in the Páramo. A total of
23	197 individuals covering the distributional range of most of these species were
24	sequenced for the nuclear ribosomal internal transcribed spacer (ITS) and 118
25	individuals for three chloroplast DNA regions (trnL-F, trnH-psbA and rpl32-trnL).
26	Haplotype networks and measures of genetic diversity were calculated at different
27	taxonomic and geographic levels. To test for possible geographic structure, a Spatial
28	Analysis of Molecular Variance (SAMOVA) was undertaken and species
29	relationships were recovered using a coalescent-based approach. Results indicate
30	complex relationships among the five South American species of Oreobolus, which
31	are likely to have been confounded by incomplete lineage sorting, though
32	hybridization cannot be completely discarded as an influence on genetic patterns,
33	particularly among the northern populations of O. obtusangulus and O. cleefii. We
34	report a case of cryptic speciation in O. obtusangulus where northern and southern
35	populations of morphologically similar individuals are genetically distinct in all
36	analyses. At the population level, the genetic evidence is consistent with contraction
37	and expansion of islands of Páramo vegetation during the climatic fluctuations of the
38	Quaternary, highlighting the role of these processes in shaping modern diversity in
39	that ecosystem.

40 KEYWORDS

42 ACKNOWLEDGEMENTS

This work was funded by a School of Biological Sciences Scholarship provided
through The University of Edinburgh. We thank the herbaria at Aarhus University,
(Denmark), Naturalis (The Netherlands) and Reading University (Great Britain) for
making material available for DNA extraction. We also thank three anonymous
reviewers for their valuable comments and James Nicholls from The University of
Edinburgh for assistance with the *BEAST analysis.

49 INTRODUCTION

The Páramo is a putatively young ecosystem that appeared following the final uplift of the northern section of the Andes Mountain Range during the Pliocene, c. 5 million years ago – Ma (van der Hammen 1974; van der Hammen and Cleef 1986; Hooghiemstra et al. 2006; Graham 2009). It occupies an area of 37500 km² and is distributed in a series of sky islands with c. 4000 plant species of which 60% are endemic (Luteyn 1999; Buytaert et al. 2010). It has been proposed that the glacial-interglacial cycles of the Quaternary may have played an important role in shaping Páramo plant populations (van der Hammen 1974; Simpson 1975). The continuous contraction and expansion of altitudinal vegetation belts may have promoted the

59	contact of Páramo islands during glacial periods, enabling the migration and
60	exchange of otherwise isolated taxa (van der Hammen and Cleef 1986). Conversely,
61	during interglacial periods, Páramo islands may have been isolated, promoting
62	speciation (van der Hammen and Cleef 1986). Furthermore, previous studies have
63	demonstrated that Páramo lineages have significantly higher speciation rates than
64	any other biodiversity hotspot on Earth and that many speciation events occurred
65	during the Pleistocene (Madriñán et al. 2013). Recent divergence times among
66	Páramo plant lineages might have implications, both at the phenotypic and genotypic
67	level, because morphological diversity and differentiation may not reflect complete
68	genetic divergence between and within closely related taxa (Schaal et al. 1998).
69	The five South American species of the schoenoid sedge <i>Oreobolus</i> R. Br. (O. cleefii
70	L.E. Mora, O. ecuadorensis T. Koyama, O. goeppingeri Suess., O. obtusangulus
71	Gaudich. and O. venezuelensis Steyerm.) are an ideal model system to investigate
72	how recent climatic and/or geological events may have shaped extant populations in
73	the Páramo. Previous studies have supported the monophyly of the South American
74	clade of Oreobolus and dated its divergence to c. 5 Ma, coinciding with the
75	appearance of the Páramo ecosystem (Chacón et al. 2006). The South American
76	clade of Oreobolus is therefore a good exemplar to study Páramo biogeography,
77	including investigating the likely effects of recent climatic events (i.e. glacial cycles
78	of the Quaternary) on the population structure of its species.
70	A handful of genetic studies for similar high altitude tropical accessions in Africa
79	A handruf of genetic studies for similar high-attitude tropical ecosystems in Africa
80	have been published in recent years (Kebede et al. 2007; Assefa et al. 2007; Gizaw et
81	al. 2013; Kadu et al. 2013; Wondimu et al. 2013). However, such studies are almost
82	non-existent for the Páramo flora (Vásquez et al. 2016; Kolář et al. 2016). The aims

of this study are to estimate the species phylogeny of the South American species of Oreobolus and their timing of diversification, to assess genetic structure at the inter-

- and intra-specific level and to interpret these in the light of Quaternary glacial-
- interglacial cycles.

METHODS

Study species and sampling

The species concepts for *Oreobolus* that we use here follow the monograph of Seberg (1988) for O. ecuadorensis, O. goeppingeri, O. obtusangulus and O. venezuelensis, and of Mora-Osejo (1987) for O. cleefii. These species, with the exception of O. obtusangulus subsp. obtusangulus, are restricted to wet, temperatelike environments in the northern section of the Tropical Andes and in the Talamanca Cordillera in southern Central America, and are found only in the high-altitude Páramo ecosystem (Seberg 1988; Chacón et al. 2006). Oreobolus cleefii is restricted to the Eastern Cordillera and the southern Andean region of Colombia. Oreobolus ecuadorensis is found in southern Colombia, Ecuador and northern Peru. Oreobolus goeppingeri is distributed in the Talamanca Cordillera in southern Central America, Colombia and Ecuador. Oreobolus obtusangulus has two subspecies with a disjunct distribution: subsp. unispicus is distributed in Colombia, Ecuador and northern Peru while subsp. obtusangulus occupies the subantarctic region of Chile, Argentina and the Falkland Islands. Finally, O. venezuelensis occupies all Páramo regions (Talamanca Cordillera, Venezuela, Colombia, Ecuador and northern Peru).

104	The distributions of all Oreobolus Páramo species overlap with those of at least one
105	other congeneric species (Fig. 1). All Páramo species are found between 3000 and
106	4300 m a.s.l. while in the subantarctic regions, the altitude at which O. obtusangulus
107	is found decreases with increasing latitude, from 2400 m a.s.l. to sea level (Seberg
108	1988). The five South American species are clearly differentiated in terms of
109	morphology and, in common with most Cyperaceae, Oreobolus is both wind
110	pollinated and dispersed (Seberg 1988). Little is known about ploidy levels and
111	chromosome numbers in Oreobolus, with the only chromosome count for O.
112	obtusangulus ssp. obtusangulus (2n = 48; Moore (1967)).
113	The five South American species of Oreobolus (O. cleefii, O. ecuadorensis, O.
114	goeppingeri, O. obtusangulus and O. venezuelensis) were sampled extensively across
115	their entire distribution range (Fig. 1). A total of 269 samples from 32 sampling
116	localities were obtained from both field collections (10 sampling localities) and
117	herbarium material (22 sampling localities) (Fig. 1 and Supp. Table 1). From each of
118	the ten field sampling localities, all within Colombia, two to ten fresh leaf samples
119	per species were collected, and their location was recorded using a handheld GPS
120	(Fig. 1, sampling localities 2 – 11). For sampling localities in Costa Rica, Ecuador,
121	Peru, Chile and Argentina (Fig. 1, sampling localities 1 and $12 - 32$), herbarium
122	material was acquired from the Utrecht (U) and Leiden University (L) branches of
123	the National Herbarium of the Netherlands, Aarhus University Herbarium (AAU)
124	and the University of Reading Herbarium (RNG). For herbarium specimens, between
125	one and ten individuals per species were sampled from each sampling locality.
126	Coordinates were recorded from the herbarium specimens and checked for accuracy
127	using the NGA GEOnet Names Server (GNS) (http://geonames.nga.mil). Sampling

localities are numbered 1 to 32 in a north to south direction. Sampling localities 1 to
23 will be referred to as northern Andes – NA (Costa Rica, Colombia, Ecuador and
Peru) and 24 to 32 as southern Andes – SA (Chile and Argentina). Previously
published sequence data for *O. cleefii*, *O. goeppingeri* and *O. venezuelensis* (Chacón
et al. 2006) were also incorporated and assigned to their corresponding sampling
locality. Supplementary Table 2 presents the complete list of samples used in this
study together with their GenBank numbers.

135 DNA extraction, amplification and sequencing

Both silica-dried fresh leaf samples and herbarium material were pulverised using a Mixer Mill (Retsch, Haan, Germany). Total genomic DNA from herbarium material was isolated following the CTAB method of Doyle and Doyle (1990) and from silica-dried samples with the DNeasy® Plant Mini Kit (QIAGEN, Manchester, UK) following the manufacturer's protocol. The chloroplast region trnL-F was amplified and sequenced using primers *trn*Lc and *trn*Lf for silica-dried material, and in combination with internal primers trnLd and trnLe for herbarium material (Taberlet et al. 1991). For silica-dried material, the ITS region was amplified and sequenced with external primers ITS5P and ITS8P (Möller and Cronk 1997). For herbarium material, owing to the increased likelihood of the DNA being degraded, amplification and sequencing were performed using external primers ITS5P and ITS8P in combination with internal primers ITS2P and ITS3P (Möller and Cronk 1997), in order to amplify the shorter ITS1 and ITS2 regions in separate reactions. The chloroplast regions trnH-psbA and rpl32-trnL were amplified and sequenced using primer pairs trnH^{GUG} (Tate and Simpson 2003)/psbA (Sang et al. 1997) and

151	$trnL^{(UAG)}/rpl32$ -F (Shaw et al. 2007), respectively. For all reactions, 20 µl PCR
152	reactions used the following proportions: 1 μ l of unquantified DNA, 1x Buffer
153	(Bioline, London, UK), 1mM dNTPs, 1.5 mM MgCl ₂ (Bioline, London, UK), 0.75
154	μM of each forward and reverse primer, $4\mu l$ of combinatorial enhancer solution
155	(CES) and 0.05 U of Taq polymerase (Bioline, London, UK). The amplification
156	cycle for all chloroplast regions (trnL-F, trnH-psbA and rpl32-trnL) consisted of 2
157	min at 94 °C, followed by 30 cycles of 1 min at 94 °C, 1 min at 52 °C and 1 min at 72
158	°C, finalising with 7 min at 72 °C. For ITS, the amplification cycle consisted of 3 min
159	at 94 °C, followed by 30 cycles of 1 min at 94 °C, 1 min at 55 °C and 90 sec at 72 °C,
160	finalising with 5 min at 72 °C. PCR products were purified with 2 µl of ExoSAP-IT®
161	(USB Corporation, High Wycombe, UK) for 5 μ l of product. Sequencing reactions
162	for each primer used the BigDye® Terminator v3.1 chemistry (Applied
163	Biosystems TM , Paisley, UK) and the manufacturer's protocol. Sequencing was
164	performed at the Edinburgh Genomics facility of the University of Edinburgh. No
165	double peaks were observed in the chromatograms of the ITS region and therefore it
166	was not necessary to clone.

167 Matrix assembly and sequence alignment

168 Contigs of forward and reverse sequences were assembled in Sequencher version 5.2

- 169 (Gene Codes Corporation, Ann Arbor, Michigan, USA). 230 ITS sequences, 169
- *trn*L-F sequences, 128 *trn*H-*psb*A sequences and 190 *rpl*32-*trn*L sequences were
- 171 generated for this study (Supp. Table 2). The sequences were manually aligned using
- 172 Mesquite v2.75 (Maddison and Maddison 2014). Supplementary Table 3 describes

- 173 number of individuals successfully sequenced per species per cluster/sampling
- 174 locality.

175 Species phylogeny and timing of diversification

The multispecies coalescent model implemented in *BEAST 2 (Heled and Drummond 2012; Bouckaert et al. 2014) was used to estimate the phylogenetic relationships amongst the five South American species of Oreobolus as well as their divergence time. Only complete sequences were used for the species tree estimation (ITS, trnL-F, trnH-psbA and rpl32-trnL; Supp. Table 2). The analysis was run using bModelTest (Bouckaert and Drummond 2017) which is a model selection tool incorporated in BEAST 2 (Bouckaert et al. 2014) that uses a Bayesian framework (reversible jump MCMC) to select the most appropriate substitution model while simultaneously estimating the phylogeny. Phylogenetic reconstruction and divergence time estimations were performed using BEAST v2.4.5 (Bouckaert et al. 2014). The tree model was linked for the three plastid regions because cpDNA does not undergo recombination. The model of lineage-specific substitution rate variation was set as a strict clock model for each dataset. A *BEAST analysis requires each taxon to be associated with a species or taxonomic unit (Taxon Sets). These were defined following current taxonomy but with O. obtusangulus divided into northern and southern taxa (based upon results presented below). The diversification model for the species tree was set to a calibrated Yule model (Heled and Drummond 2012) with the population size model at its default setting. The root of the species tree was clock calibrated using a prior with a normal distribution defined by a mean (μ) of 4.76 Ma and a standard deviation (σ) of 1.2 Ma. The age and error range correspond

to those estimated for the crown node of the South American *Oreobolus* clade from a
dated phylogeny of the Schoeneae tribe using one fossil and one secondary
calibration (Gómez-Gutiérrez, 2016). A normal distribution was used on the root
because it is the most suitable for secondary calibrations (Ho and Phillips 2009). This
type of distribution allocates most of the probability density around the mean and
allows for symmetrical decrease towards the tails accounting for age error (Ho and
Phillips 2009). All other priors were left at their default settings.

Four independent MCMC runs of 250 million generations each were performed,
sampling every 25000 generations. Runs were combined and 75% of the samples
were discarded as burn-in. Adequate mixing and convergence were assessed using
Tracer v1.6.0 (Rambaut et al. 2013). A maximum clade credibility tree (MCC) from
the combined tree sets was annotated with common ancestor heights, 95% HPD node
ages and posterior probability values (PP) on TreeAnnotator v2.1.2 (Rambaut and
Drummond 2015).

210 <u>Haplotype definition and networks</u>

Haplotypes were identified independently for the nuclear ribosomal region (ITS) and the concatenated plastid regions (trnL-F, trnH-psbA and rpl32-trnL) in Microsoft Excel (Microsoft Corporation, Washington DC, USA) using the Chloroplast PCR-RFLP Excel macro (French 2003). For ITS, only samples successfully sequenced for the whole region were included (Supp. Table 2). Likewise, for the concatenated plastid regions, only samples successfully sequenced for all three regions were considered (Supp. Table 2). Informative insertion/deletion events (indels) were included in the analysis and coded as absent (0) or present (1) following the simple

219	indel coding method of Simmons and Ochotenera (2000). Poly-T and poly-A length
220	polymorphisms, di-nucleotide repeats and ambiguously aligned regions were
221	excluded from subsequent analyses for all regions. Haplotype connection lengths
222	were calculated using Arlequin ver3.5 (Excoffier and Lischer 2010) and a minimum-
223	spanning tree was produced in Hapstar v0.5 (Teacher and Griffiths 2011).
224	NeighborNet networks - NN (Bryant and Moulton 2004) were also constructed for
225	both nuclear and concatenated plastid haplotypes using Splitstree 4 (Huson and
226	Bryant 2006). This method allows representation of conflicting signals in the data,
227	which might be due to incomplete lineage sorting or reticulate evolution (Bryant and
228	Moulton 2004; Huson and Bryant 2006). In the resulting network, conflicts are
229	represented by parallel edges connecting taxa. The NN networks used uncorrected-p
230	distances, which calculate the number of changes between each pair of haplotypes.
231	Genetic diversity and structure
231 232	<u>Genetic diversity and structure</u> Sampling localities were combined into clusters to increase the likelihood of
231 232 233	Genetic diversity and structure Sampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined
231 232 233 234	Genetic diversity and structure Sampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined regardless of species classification, an approach justified by Gómez-Gutiérrez (2016;
231 232 233 234 235	Genetic diversity and structure Sampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined regardless of species classification, an approach justified by Gómez-Gutiérrez (2016; see also results below) who showed poor phylogenetic resolution amongst the South
231 232 233 234 235 236	Genetic diversity and structure Sampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined regardless of species classification, an approach justified by Gómez-Gutiérrez (2016; see also results below) who showed poor phylogenetic resolution amongst the South American species of Oreobolus. Fourteen clusters (A – N) were defined according to
231 232 233 234 235 236 237	Genetic diversity and structure Sampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined regardless of species classification, an approach justified by Gómez-Gutiérrez (2016; see also results below) who showed poor phylogenetic resolution amongst the South American species of <i>Oreobolus</i> . Fourteen clusters (A – N) were defined according to geographic distance and ensuring the absence of any significant geographic barrier
231 232 233 234 235 236 237 238	Genetic diversity and structure Sampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined regardless of species classification, an approach justified by Gómez-Gutiérrez (2016; see also results below) who showed poor phylogenetic resolution amongst the South American species of <i>Oreobolus</i> . Fourteen clusters (A – N) were defined according to geographic distance and ensuring the absence of any significant geographic barrier between sampling localities within each cluster such as deep inter-Andean valleys.
 231 232 233 234 235 236 237 238 239 	Genetic diversity and structureSampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined regardless of species classification, an approach justified by Gómez-Gutiérrez (2016; see also results below) who showed poor phylogenetic resolution amongst the South American species of <i>Oreobolus</i> . Fourteen clusters (A – N) were defined according to geographic distance and ensuring the absence of any significant geographic barrier between sampling localities within each cluster such as deep inter-Andean valleys.Haplotype (h) and nucleotide (π) diversities were calculated independently for each
 231 232 233 234 235 236 237 238 239 240 	Genetic diversity and structure Sampling localities were combined into clusters to increase the likelihood of detecting phylogeographic signal (Fig. 1, Supp. Table 1). Clusters were defined regardless of species classification, an approach justified by Gómez-Gutiérrez (2016; see also results below) who showed poor phylogenetic resolution amongst the South American species of <i>Oreobolus</i> . Fourteen clusters (A – N) were defined according to geographic distance and ensuring the absence of any significant geographic barrier between sampling localities within each cluster such as deep inter-Andean valleys. Haplotype (h) and nucleotide (π) diversities were calculated independently for each cluster and each species in Arleouin ver3.5 (Excoffier and Lischer 2010).

241	Additionally, haplotype richness (hr) was estimated for each species using
242	HIERFSTAT (Goudet 2005) in R version 3.2.3 (R Core Team 2015). This package uses
243	a rarefaction procedure set to 100 runs to correct for bias due to unequal sample
244	sizes. ITS sample size was standardised to 15 individuals while cpDNA sample size
245	was standardised to nine. Additionally, F_{ST} values between cluster pairs and species
246	pairs were calculated independently for ITS and the concatenated plastid regions
247	using Arlequin ver3.5 (Excoffier and Lischer 2010). NN networks for both nuclear
248	and concatenated plastid regions were constructed from the calculated F_{ST} values.
249	For the cluster pairs, clusters A, K and N were excluded from the analysis due to
250	their low sample sizes (N \leq 2). In the case of the species pairs, calculations were first
251	undertaken considering O. obtusangulus as one species and then with the northern
252	and southern populations considered as two different species.
253	To analyse the geographical structure of genetic variation, a spatial analysis of
254	molecular variance (SAMOVA) was performed independently for the nuclear and
255	concatenated plastid datasets (Dupanloup et al. 2002). SAMOVA identifies groups of
256	populations/clusters that are geographically homogeneous as well as maximising
257	genetic differentiation amongst them (Dupanloup et al. 2002). One hundred
258	annealing simulations were undertaken for each possible number of groups (ITS, $K =$
259	2-13; cpDNA, K = $2-12$). The minimum number of groups (K) was chosen that
260	maximised the genetic differentiation amongst them (F_{CT}). Subsequently, haplotype
261	(h) and nucleotide (π) diversities were calculated for the resulting SAMOVA groups
262	in Arlequin ver3.5 (Excoffier and Lischer 2010). Likewise, haplotype richness (hr)
263	was estimated for each group using HIERFSTAT (Goudet 2005) in R version 3.2.3 (R
264	Core Team 2015). Similarly, to test if the phylogeographic structure had a

265	phylogenetic component, two measures of genetic differentiation amongst clusters
266	were estimated using PERMUTCPSSR 2.0 (Pons and Petit 1996; Burban et al. 1999).
267	A distance matrix was calculated based on the number of mutational steps between
268	haplotypes (N_{ST}) and on haplotype frequencies (G_{ST}). Ten thousand permutations
269	were performed to assess if N_{ST} was significantly higher than G_{ST} .
270	Additionally, variation in genetic structure was further examined for 1) all species, 2)
271	all clusters, 3) northern Andes clusters only, 4) clusters grouped by region (northern
272	Andes, southern Andes) and 5) SAMOVA groups using an analysis of molecular
273	variance (AMOVA) in Arlequin ver3.5 (Excoffier and Lischer 2010).
274	RESULTS
275	Species phylogeny and timing of diversification
276	The MCC tree for the combined tree sets (Fig. 2) shows O. cleefii, O. ecuadorensis,
277	O. goeppingeri and O. venezuelensis are recovered as monophyletic. The results
278	support the genetic differentiation between O. obtusangulus from the northern Andes
279	region (NA; Fig. 2) and O. obtusangulus from the southern Andes region (SA; Fig.
280	2). Oreobolus obtusangulus (SA) is sister to all remaining species. In the northern
281	Andean clade (NAC; PP=100%), O. ecuadorensis, O. cleefii and O. obtusangulus
282	(NA) form a clade (PP=75%) sister to another clade composed of O. goeppingeri and
283	O. venezuelensis (PP=71%). Oreobolus cleefii and O. obtusangulus (NA) are
284	recovered as sister species (PP=87%). South American Oreobolus diverged c. 4.39
285	Ma (95% HPD [1.96 – 6.97] Ma) during the Pliocene (Fig. 2). Subsequently, the

- NAC diversified into five species c. 0.44 Ma (95% HPD 0.11 0.81] Ma) during the
- 287 Pleistocene (Fig. 2).

288 Haplotype definition and networks

289 Nuclear ribosomal DNA

290 A total of 197 individuals from 14 clusters (A - N) were scored for ITS haplotypes,

291 including individuals for all five species across their entire distribution range (Supp.

292 Table 3). After exclusion of poly-T and poly-A length polymorphisms, di-nucleotide

- repeats and ambiguously aligned regions, 523 bp of aligned sequences remained.
- 294 Thirty-nine polymorphic sites comprising 38 nucleotide substitutions and one indel

defined thirty haplotypes. Of these, 22 (73.3%) were species-specific while eight

296 (26.7%) were shared among species (Fig. 3, Supp. Table 4 and Supp. Fig. 1). There

297 was no clear clustering according to current taxonomy evident in either the

298 NeighborNet network (NN) (Fig. 3) or the minimum-spanning tree (MST) (Supp.

299 Fig. 1), for example *O. obtusangulus* is not resolved in one group.

At a continental scale, haplotypes were geographically restricted with no shared haplotypes between the NA region and the SA (Fig. 3, Supp. Table 4 and Supp. Fig. 1). This geographic structure was evident in both the minimum-spanning tree (Supp. Fig. 1) and the NN network (Fig. 3). Within the NA sampling localities, patterns were more complicated. There are eight shared haplotypes evident in the MST (Supp. Fig. 1) and many edges in the NN Network (Fig. 3). Of the eight shared haplotypes, seven occur in O. obtusangulus. Furthermore Hn9, a haplotype shared between O. goeppingeri and O. obtusangulus, is located in the middle of the MST connecting the SA and NA haplotypes (Supp. Fig. 1). When not considering shared

haplotypes, Hn12 and Hn14 found in *O. goeppingeri* are closer to those found in other species than they are to other haplotypes of the same species as are Hn28 and Hn30 in O. venezuelensis.

Plastid DNA

A total of 118 individuals from 13 clusters (B - N) were successfully sequenced for all three plastid markers (*trn*L-F, *trn*H-*psb*A and *rpl*32-*trn*L), including individuals from all five species across most of their distribution range (Supp. Table 3). A concatenated matrix of 2465 bp of aligned sequences (trnL-F, 1040 bp; trnH-psbA, 676 bp; *rpl32-trnL*, 749 bp) resulted after the exclusion of poly-T and poly-A length polymorphisms, di-nucleotide repeats and ambiguously aligned regions. Forty haplotypes were identified based on 141 polymorphic sites (trnL-F, 53; trnH-psbA, 14; rpl32-trnL, 74) including 112 nucleotide substitutions and 28 indels. Thirty-four haplotypes (85%) were species-specific while six (15%) were shared among species (Fig. 4, Supp. Table 5 and Supp. Fig. 2). When only considering species-specific haplotypes, both the MST and NN network showed some degree of clustering according to taxonomy for three of the species, namely O. ecuadorensis, O. goeppingeri and O. venezuelensis (Fig. 4 and Supp. Fig. 2). As for ITS, there were no shared haplotypes between the NA and the SA regions (Fig. 4, Supp. Table 5 and Supp. Fig. 2). This geographic structure was evident in both the MST and the NN network (Fig. 4 and Supp. Fig. 2). There was low support for groupings in the cpDNA network in the relationships amongst NA groups compounded by the large number of possible unsampled haplotypes. The results of

- the cpDNA analysis were similar to those of ITS in showing a large number of edges
- and of shared haplotypes.

333 Genetic diversity and structure

334 Species genetic structure

- 335 Molecular diversity indices for ITS and cpDNA for the five *Oreobolus* species,
- including the two *O. obtusangulus* groups (NA and SA), are shown in Table 1.
- Haplotype and nucleotide diversity was lowest in *O. ecuadorensis* and highest in *O.*
- *obtusangulus* (Table 1). Similarly, haplotypic richness was lowest in *O. ecuadorensis*
- and highest in O. obtusangulus. However, the high values in O. obtusangulus were
- 340 reduced when considering SA and NA populations of *O. obtusangulus* as separate

341 species (see Table 1).

342 Pairwise F_{ST} values between all species pairs were significant for ITS and cpDNA

343 (ITS: p < 0.001; cpDNA: p < 0.05), with the exception of O. cleefii and O.

- *obtusangulus* (NA) for cpDNA ($F_{ST} = -0.020$) (Table 2, Supp. Figs 3 4).
- *Oreobolus ecuadorensis* is consistently differentiated from the other species in both
- 346 ITS and cpDNA (Table 2, Supp. Figs 3 4). The NN, based on F_{ST} values showed
- that when considering *O. obtusangulus* as one species, it is reconstructed in the
- 348 middle of the network and its placement is poorly resolved in both ITS and cpDNA
- 349 NN networks (Supp. Figs 3a 4a). In contrast, when considering northern and
- 350 southern groups separately, O. obtusangulus (SA) is clearly different from other
- 351 Oreobolus species, whereas O. obtusangulus (NA) has affinities with O. cleefii. The
- 352 conflicting signal between the latter two species (i.e., multiple parallel edges) is
- evident in both cpDNA and ITS NN networks (Supp. Figs 3b 4b). Oreobolus

357 Cluster genetic structure

358 The results of the AMOVA showed that although differentiation amongst species

359 was significant (ITS, $F_{ST} = 0.30$, p < 0.001; cpDNA, $F_{ST} = 0.48$, p < 0.001), within

360 species variation accounted for 70% for ITS and 52% for cpDNA (Table 3).

361 Similarly, separation into geographic clusters only explained 43% (ITS) and 37%

362 (cpDNA) of the variation.

363 The SAMOVA for both ITS and cpDNA indicated three groups (I – III; Supp. Table

8, Supp. Figs 1-2) as the number of genetic clusters (K) that maximised genetic

365 differentiation amongst groups while minimising the number of single-cluster groups

366 (ITS, $F_{CT} = 0.622$, p < 0.001; cpDNA, $F_{CT} = 0.426$, p < 0.001). For ITS, group I

367 included all NA clusters (A – J) while groups II (K, L, N) and III (M) included the

368 SA ones (Supp. Table 8, Supp. Fig. 1). For cpDNA, group I included all NA clusters

369 plus the northernmost SA cluster (K), while groups II (L, N) and III (M) included the

- rest (Supp. Table 8, Supp. Fig. 2). SAMOVA groups explained slightly more of the
- 371 genetic structure (ITS, $F_{CT} = 0.62$, p < 0.001; cpDNA, $F_{CT} = 0.43$, p < 0.001) than the
- 372 NA versus SA continental divide (ITS, $F_{CT} = 0.60$, p < 0.001; cpDNA, $F_{CT} = 0.36$, p

373 < 0.001) (Table 3). Molecular diversity indices calculated for the SAMOVA groups

- are presented in Table 4. Significant phylogeographic structure was indicated by the
- significantly higher values of N_{ST} (ITS, $N_{ST} = 0.605$; cpDNA, $N_{ST} = 0.406$)
- 376 compared to G_{ST} (ITS, $G_{ST} = 0.262$; cpDNA, $G_{ST} = 0.156$; p < 0.01).
- б

377 DISCUSSION

378 <u>Timing of diversification</u>

379	The dated species tree presented here (Fig. 2) indicates younger diversification dates
380	than those presented by Chacón et al. (2006), which is expected because divergence
381	dates estimated from a species tree will generally be younger than those estimated
382	from a gene tree (Drummond and Bouckaert 2015). Our species phylogeny indicates
383	that the most recent common ancestor of the South American Oreobolus diverged
384	4.39 Ma (95% HPD [1.96 – 6.97] Ma) during the late Miocene – early Pliocene.
385	Subsequently, the northern Andean clade (NAC) appears to have diversified from
386	0.44 Ma (95% HPD $[0.11 - 0.81]$ Ma). This indicates that the expansion and
387	contraction of Páramo islands during the glacial cycles of the Quaternary may have
388	played a role in diversification in the northern Andes (see last section of the
389	discussion) (van der Hammen 1974; Simpson 1975; van der Hammen and Cleef
390	1986; Hooghiemstra and van der Hammen 2004).

391 Genetic diversity and structure

Our results reveal a complex evolutionary history for the five South American
species of *Oreobolus*. Species relationships were difficult to estimate, indicating
either interspecific gene flow and/or incomplete lineage sorting (Naciri and Linder
2015). Haplotype and nucleotide diversity were high for both ITS and cpDNA for all
species except *O. ecuadorensis* (Table 1). Additionally, shared haplotypes were
observed in both ITS (27%) and cpDNA (15%). This intricate history is also evident

in the MST and NN networks for both ITS and cpDNA (Figs. 3 – 4 and Supp. Figs. 1
- 2).

The high degree of complexity observed amongst these species contrasts with the morphological characters that distinguish them. Inconsistencies between morphological characteristics and genetic patterns can arise due to high levels of plasticity of morphological characters or parallel adaptations to local conditions resulting in the same morphology, which might be the case for *O. obtusangulus*. The data presented here indicate that the two subspecies of O. obtusangulus represent morphologically cryptic species. Britton et al. (2014) have described another example of cryptic speciation within the Schoeneae in the South African species Tetraria triangularis. These authors found at least three intraspecific lineages that qualified as cryptic species based on their genetic distinctiveness and subtle morphological differentiation. Furthermore, cryptic lineages have also been found in otherwise morphologically indistinguishable taxa within the Páramo genus Loricaria (Asteraceae) (Kolář et al. 2016).

Nonetheless, convergent morphological evolution does not appear to satisfactorily account for the genetic patterns observed in many South American species of Oreobolus, which may result from incomplete lineage sorting (ILS) and/or hybridization. Given the recent Pliocene diversification of both the northern and southern Andean clades of Oreobolus (Fig. 2), lineage sorting may not have been fully completed. Previous studies have indicated ILS in recently diverged groups, particularly when effective population sizes are large (Maddison and Knowles 2006; Jakob and Blattner 2006; Degnan and Rosenberg 2009; Cutter 2013). Furthermore, under a scenario of ILS, it is expected that different genes would have different

422	coalescence times. Haploid plastid genes have a lower effective population size than
423	nuclear genes and thus would coalesce faster (Schaal and Olsen 2000; Naciri and
424	Linder 2015). Faster coalescence would be translated into an increased
425	correspondence between the genetic relationships recovered with plastid genes and
426	currently recognised taxonomic species. Our results support this scenario because
427	cpDNA better differentiates taxonomic species than ITS for O. ecuadorensis, O.
428	goeppingeri and O. venezuelensis (Figs. $3 - 4$ and Supp. Figs. $1 - 2$).
429	However, species relationships may be obscured by ongoing gene flow as patterns of
430	ILS are difficult to disentangle from those of historic hybridization. Two species
431	pairs, Oreobolus cleefii and O. obtusangulus (NA), and O. goeppingeri and O.
432	venezuelensis, show patterns indicative of ILS and/or hybridization. Firstly,
433	Oreobolus cleefii and O. obtusangulus (NA) show contrasting patterns between
434	nuclear (ITS) and cpDNA haplotypes (Figs. $3 - 4$ and Supp. Figs. $1 - 2$) possibly due
435	to chloroplast capture and simultaneous nuclear introgression (Abbott et al. 2013).
436	These closely related species naturally occur in sympatry in all of the sampled
437	localities (Fig. 1) and show an overlap in morphological characters (Seberg 1988). In
438	fact, morphological similarities previously lead Seberg (1988) to suggest that O.
439	cleefii should be reduced to synonymy under O. obtusangulus subsp. unispicus, the
440	northern Andean subspecies of O. obtusangulus. Secondly, the two most widespread
441	species in the Páramo, O. goeppingeri and O. venezuelensis, also naturally occur in
442	sympatry in all sampled localities (Fig. 1). These species also show complicated
443	genetic patterns, combining high levels of diversity with shared haplotypes (Figs. 3
444	and 4) and conflicting phylogenetic relationships (Supp. Figs. $3 - 4$ with other
445	northern Andean species). A possible explanation is that the widespread nature of

446	these species provided greater opportunities for intra, and interspecific mixing
447	compared with more range-restricted species, which exhibit a similar pattern of
448	haplotype sharing, albeit on a smaller scale (Supp. Figs. $1 - 2$).
449	Current gene flow would be expected to result in F1 hybrids that would exhibit
450	heterozygosity in ITS, but this was not observed in any Oreobolus species, although
451	such heterozygosity may no longer be evident in older hybrids. While the presence of
452	later generations of hybrids or backcrosses cannot be excluded, the lack of
453	heterozygosity in ITS and the presence of shared haplotypes recovered in multiple
454	pairs of individuals from all species is more suggestive of a stochastic process likely
455	related to lineage sorting. Therefore, although gene flow cannot be ruled out and may
456	have a role in some situations (e.g. Oreobolus cleefii and O. obtusangulus see
457	below), we suggest incomplete lineage sorting in a recently diversified group is also
458	part of the explanation for the complex patterns observed in the South American
459	species of Oreobolus. A recent phylogeographic study of the Australian alpine Poa
460	(Poaceae) describes a similar pattern of problematic recovery of species relationships
461	associated with a putatively young ecosystem and a Pleistocene radiation following
462	long-distance dispersal to Australia (Griffin and Hoffmann 2014). This study also
463	favoured ILS rather than ongoing gene flow as the likely process behind the
464	observed pattern based on the widespread genetic similarity and recent divergence
465	times.
466	The results of the AMOVAs revealed that neither clustering into currently defined
467	taxonomic species (Mora-Osejo 1987; Seberg 1988) nor into our pre-defined
468	geographic clusters (Fig. 1, Supp. Table 1) described the distribution of genetic
469	diversity, only explaining 30% (ITS)/48% (cpDNA) and 43% (ITS)/37% (cpDNA),

470	respectively (Table 3). Rather, the SAMOVA suggested that an <i>a posteriori</i>
471	geographic arrangement better explained genetic diversity (62% for ITS and 43% for
472	cpDNA, Table 3). Thus, the observed patterns of genetic diversity are likely to be the
473	result of complex interactions between some species over various geographic
474	distances.
475	At a continental scale there is evidence of geographic structure in Oreobolus species,
476	(Figs. 1 – 2, Supp. Figs. 1 – 2), suggested by a higher value of N_{ST} compared to G_{ST}
477	(p < 0.01), indicating that haplotypes in the same cluster are on average more closely
478	related than distinct haplotypes from different clusters. The clearest geographic break
479	apparent in Oreobolus is between the northern Andes (NA) and southern Andes
480	(SA). This pattern is evident in both chloroplast and nuclear regions, although the
481	pattern is much stronger in ITS (Figs. $1 - 2$, Supp. Figs. $1 - 2$). The arid central
482	Andes are likely to impose a barrier to dispersal and gene flow, but the position of
483	the north-south break is unclear. SAMOVA groups clearly identify the NA/SA
484	disjunction in ITS but not in the plastid region where cluster K is grouped with the
485	northern Andean clusters (Supp. Table 8, Supp. Figs. $1 - 2$). The latter is also evident
486	in the cpDNA NN where the distance between haplotypes is shorter than in the NN
487	for ITS (Figs. $1 - 2$). The incongruence between ITS and plastid regions may suggest
488	mixing between the SAC and NAC in cluster K, resulting from long distance
489	dispersal events. Cluster K is separated from both NA clusters and other SA clusters
490	by a substantial distance and possesses unique haplotypes at both ITS and plastid
491	regions (Supp. Tables 4 – 5).
492	Additional structure is evident at regional scales within the NAC and appears to be
493	associated with putative geographic barriers to gene flow. Pairwise F_{ST} values

494	calculated for ITS showed that clusters B and J were significantly differentiated from
495	all other sites, regardless of the geographic distances (Fig. 5, Supp. Table 7). These
496	two clusters are separated from all other NA clusters by inter-Andean valleys of
497	seasonally dry tropical forest. Cluster B is isolated from the rest by the dry
498	Chicamocha Canyon while cluster J is separated from the other NA clusters by the
499	Marañón Valley (Fig. 1). Särkinen et al. (2012) suggested that biome heterogeneity
500	across the Andes represented a strong barrier to dispersal within island-like
501	ecosystems. This is particularly relevant when deep valleys segment the mountain
502	ranges, as is the case here. In addition, for O. venezuelensis, clusters H and I have
503	ITS haplotypes distinct from others in the species, namely Hn28 and Hn30 (Fig. 1,
504	Supp. Fig. 1). These haplotypes are distributed in the southernmost part of these
505	species' distribution range and their differentiation from species-specific haplotypes
506	distributed in the northernmost areas (Hn26, Hn27 and Hn28) further supports the
507	observed phylogeographic structure and possible pattern of isolation by distance.

508 Genetic patterns in the light of Quaternary glacial-interglacial cycles.

Our dated tree (Fig. 2) is consistent with Quaternary diversification in the NAC, and high levels of molecular diversity for both nuclear and plastid regions, as well as the high number of unsampled cpDNA haplotypes in our dataset, are concordant with a scenario of expansion and contraction of Páramo islands during the glacial cycles of the Quaternary (Table 4, Supp. Table 8 and Supp. Fig. 2). SAMOVA analysis failed to identify any clear groupings within the NAC (Supp. Table 8, Supp. Figs. 1 - 2) and variation amongst NA clusters was moderate and mostly explained by within cluster variation (ITS, 86%; cpDNA, 79%; Table 3). Vicariance events would allow

517	for differentiation of populations and diversification, through selection and drift. If
518	reproductive isolation is incomplete, subsequent expansion events may have allowed
519	gene flow amongst nearby populations and potentially even amongst species.
520	Repeated vicariance and contact, which would be expected from Quaternary glacial
521	cycles, would generate complex genetic patterns, with species sharing haplotypes.
522	Such patterns are evident in Oreobolus, with a few widespread haplotypes amongst
523	species apparently giving rise to geographically restricted haplotypes (Supp. Figs. 1
524	-2). Similar patterns have been reported for the afro-alpine populations of <i>Arabis</i>
525	alpina where several cycles of range contraction and expansion caused by the glacial
526	cycles of the Quaternary may have shaped intra-specific distribution of genetic
527	diversity (Assefa et al. 2007). In the same way, cluster M in the SA region is a
528	divergent genetic group for both ITS and cpDNA in SAMOVA analyses (Supp. Figs.
529	1-2). Molecular diversity indices for this cluster showed low haplotype diversity
530	and high nucleotide diversity in ITS, and high haplotype diversity and low nucleotide
531	diversity in cpDNA (Supp. Table 8). A possible explanation for this pattern might be
532	that these populations underwent a bottleneck during isolation resulting in a low
533	number of divergent haplotypes. During the glacial cycles of the Quaternary ice
534	sheets covered extensive areas and generated massive fragmentation and restriction
535	in the distribution of southern Andean plants producing pockets of refugial
536	populations (e.g. Markgraf et al. 1995). Although a scenario of Pleistocene refugia
537	has already been proposed for other southern Andean plants (e.g. Tremetsberger et
538	al. 2009) further work would be required to assess the potential for refugial
539	populations in O. obtusangulus (SA).

540	Glacial cycles may have also had an impact at the inter-specific level. Oreobolus
541	ecuadorensis has the lowest molecular diversity indices for both ITS and cpDNA
542	(Table 1) and is one of the most geographically restricted species, found only in
543	Ecuador and northern Peru (Fig. 1). Such patterns may arise through a severe
544	bottleneck followed by a population expansion likely imposed by the glacial cycles
545	of the Quaternary (Templeton 1998; Hewitt 2004). Ecuador and Peru have the
546	highest percentage of permanent snow and therefore interglacial periods may have
547	greatly reduced the size of the populations of O. ecuadorensis, reducing its genetic
548	diversity. Following the Last Glacial Maximum (LGM), population expansion may
549	have occurred with new mutations likely to accumulate as the species occupied new
550	areas. New haplotypes were thereby produced, diverging from the founder
551	population by only a few nucleotides. At the same time, the strong impact of
552	interglacial periods is evident in the clear differentiation of O. ecuadorensis from all
553	other species (Table 2, Supp. Figs. $3 - 4$).
554	There was no clear evidence of ongoing hybridization but historic hybridization
555	between sympatric sister species O. cleefii and O. obtusangulus (NA) may have been
556	facilitated by periods of isolation and divergence during the glacial cycles of the
557	Quaternary. Secondary contact zones can form from long-distance dispersal events,
558	leading to interspecific hybridization, such as that proposed by Gizaw et al. (2016)
559	for two co-occurring sister species of <i>Carex</i> from a similar tropical alpine ecosystem
560	in East Africa. We suggest a similar scenario for O. cleefii and O. obtusangulus
561	(NA), with renewed contact occurring following isolation during interglacial periods

562 in the Quaternary (van der Hammen 1974).

563 CONCLUSION

564	This is one of a few studies to investigate genetic relationships both within and
565	between species in a recently diverged Páramo genus and hence it provides a
566	significant contribution to the understanding of the historical assembly of the Páramo
567	flora. The results presented here are consistent with a role for contraction and
568	expansion of Páramo islands during glacial cycles in the diversification of Oreobolus
569	species. ILS appears to have played a role in the complex genetic patterns observed
570	amongst these recently diverged Oreobolus species. ILS rather than recent
571	hybridization is suggested by the lack of heterozygosity in ITS, but a role for
572	historical hybridization cannot be discounted, particularly in several situations where
573	the species are sympatric. Additional work incorporating more extensive sampling of
574	individuals and assessing additional genetic data will be required to more accurately
575	estimate patterns of historical demography of Oreobolus, which could bring further
576	insight into the population dynamics of Páramo plants.

578 CONFLICT OF INTEREST

579 The authors declare that they have no conflict of interest.

580 DECLARATION OF AUTHORSHIP

- 581 MCGG and JER devised the project. LEN assisted with data analyses. MCGG
- 582 drafted the text, with substantial contributions by JER, RTP and LEN. All authors
- 583 contributed to final editing.

REFERENCES

- Abbott R, Albach D, Ansell S, et al (2013) Hybridization and speciation. J Evol Biol
 26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x
- 586 Arnold ML (1997) Natural hybridization and evolution. Oxford University Press,
 587 New York
- Assefa A, Ehrich D, Taberlet P, et al (2007) Pleistocene colonization of afro-alpine
 "sky islands" by the arctic-alpine *Arabis alpina*. Heredity 99:133–142. doi:
 10.1038/sj.hdy.6800974
- Bouckaert R, Drummond AJ (2017) bModelTest: Bayesian phylogenetic site model
 averaging and model comparison. BMC Evolutionary Biology 17:1–11. doi:
 10.1186/s12862-017-0890-6
- Bouckaert R, Heled J, Kühnert D, et al (2014) BEAST 2: A Software Platform for
 Bayesian Evolutionary Analysis. PLoS Comput Biol 10:e1003537–6. doi:
 10.1371/journal.pcbi.1003537
 - Britton MN, Hedderson TA, Verboom GA (2014) Topography as a driver of cryptic
 speciation in the high-elevation cape sedge *Tetraria triangularis* (Boeck.) C. B.
 Clarke (Cyperaceae: Schoeneae). Molecular Phylogenetics and Evolution 77:96–
 doi: 10.1016/j.ympev.2014.03.024

602 603	Construction of Phylogenetic Networks. Molecular Biology and Evolution 21:255–265. doi: 10.1093/molbev/msh018
604	Burban C. Petit R. Carcreff F. Jactel H (1999) Rangewide variation of the maritime
604 605	pipe bast scale Matsucoccus favtaudi Duc. (Homontera: Matsucoccidae) in
606	relation to the genetic structure of its host. Mol Ecol 8:1593–1602.
607	Buytaert W, Cuesta-Camacho F, Tobón C (2010) Potential impacts of climate
608 609	change on the environmental services of humid tropical alpine regions. Global Ecology and Biogeography 20:19–33. doi: 10.1111/j.1466-8238.2010.00585.x
610	Chacón J, Madriñán S, Chase MW, Bruhl JJ (2006) Molecular phylogenetics of
611	Oreobolus (Cyperaceae) and the origin and diversification of the American
612	species. Taxon 55:359–366.
613	Cutter AD (2013) Integrating phylogenetics, phylogeography and population
614 615	genetics through genomes and evolutionary theory. Molecular Phylogenetics and Evolution 69:1172–1185. doi: 10.1016/j.ympev.2013.06.006
616	Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference
617	and the multispecies coalescent. Trends in Ecology & Evolution 24:332–340.
618	doi: 10.1016/j.tree.2009.01.009
619	Doyle J, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15.
620	Drummond AJ, Bouckaert RR (2015) Bayesian Evolutionary Analysis with BEAST,
621	First. Cambridge University Press, Cambridge
622	Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to
623	define the genetic structure of populations. Mol Ecol 11:25/1–2581.
524	Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to
625 626	Ecology Resources 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x
627	French GC (2003) Conservation genetics of British Euphrasia L. University of
628	Edinburgh and Royal Botanic Garden Edinburgh, Edinburgh
629	Gizaw A, Kebede M, Nemomissa S, et al (2013) Phylogeography of the heathers
630	Erica arborea and E. trimera in the afro-alpine "sky islands" inferred from
631	AFLPs and plastid DNA sequences. Flora 208:453–463. doi:
632	10.1016/j.flora.2013.07.007
633	Gizaw A, Wondimu T, Mugizi TF, et al (2016) Vicariance, dispersal, and
634 COF	nybridization in a naturally fragmented system: the alfo-alpine endemics <i>Carex</i>
635 636	10.1007/s00035-015-0162-2
	Goudet J (2005) Hierfstat, a package for R to compute and test hierarchical F-

638 639	statistics. Molecular Ecology Notes 5:184–186. doi: doi: 10.1111/j.1471-8278 .2004.00828.x
640 641	Gómez-Gutiérrez MC (2016) Evolution in the high-altitude Páramo ecosystem. The University of Edinburgh PhD thesis.
642	Graham A (2009) The Andes: a geological overview from a biological perspective.
643	Annals of the Missouri Botanical Garden 96:371–385. doi: 10.3417/2007146
644	Griffin PC, Hoffmann AA (2014) Limited genetic divergence among Australian
645	alpine Poa tussock grasses coupled with regional structuring points to ongoing
646 647	gene flow and taxonomic challenges. Annals of Botany 113:953–965. doi: 10.1093/aob/mcu017
648	Heled J, Drummond AJ (2012) Calibrated Tree Priors for Relaxed Phylogenetics and
649 650	Divergence Time Estimation. Systematic Biology 61:138–149. doi: 10.1093/sysbio/syr087
651	Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary.
652	Philosophical Transactions of the Royal Society B: Biological Sciences
653	359:183–195. doi: 10.1098/rstb.2003.1388
654	Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic
655	estimation of evolutionary divergence times. Systematic Biology 58:367–380.
656	doi: 10.1093/sysbio/syp035
657	Hooghiemstra H, van der Hammen T (2004) Quaternary Ice-Age dynamics in the
658	Colombian Andes: developing an understanding of our legacy. Philosophical
659 660	10.1098/rstb.2003.1420
661	Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of
662	Colombia: implications for biogeography and biodiversity. Annals of the
663	Missouri Botanical Garden 93:297–324. doi: 10.3417/0026-
664	6493(2006)93[297:TPROCI]2.0.CO;2
665	Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary
666	studies. Molecular Biology and Evolution 23:254–267. doi:
667	10.1093/molbev/msj030
668	Jakob SS, Blattner FR (2006) A chloroplast genealogy of Hordeum (Poaceae): long-
669	term persisting haplotypes, incomplete lineage sorting, regional extinction, and
670	the consequences for phylogenetic inference. Molecular Biology and Evolution
6/1	23:1602–1612. doi: 10.1093/molbev/msi018
672	Kadu CAC, Konrad H, Schueler S, et al (2013) Divergent pattern of nuclear genetic
673	diversity across the range of the Afromontane <i>Prunus africana</i> mirrors variable
674	climate of African highlands. Annals of Botany 111:47–60. doi:
675	10.1093/aob/mcs235

0/0	Kebede M, Ehrich D, Taberlet P, et al (2007) Phylogeography and conservation
677	genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East
578	African mountains. Mol Ecol 16:1233–1243. doi: 10.1111/j.1365-
679	294X.2007.03232.x
680	Kolář F, Dušková E, Sklenář P (2016) Niche shifts and range expansions along
581	cordilleras drove diversification in a high-elevation endemic plant genus in the
82	tropical Andes. Mol Ecol 25:4593–4610. doi: 10.1111/mec.13788
583	Luteyn JL (1999) Páramos: a checklist of plant diversity, geographical distribution,
84	and botanical literature, First. The New York Botanical Garden Press, New York
585	Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage
686	sorting. Systematic Biology 55:21–30. doi: 10.1080/10635150500354928
587	Maddison WP, Maddison DR (2014) Mesquite: a modular system for evolutionary
588	analysis. Version 2.75. Available at http://mesquiteproject.org. –
589	mesquiteproject.org.
690	Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world's fastest evolving
591	and coolest biodiversity hotspot. Frontiers in Genetics 4:1–7. doi:
i92	10.3389/fgene.2013.00192/abstract
593	Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and
594	paleoclimatic change in southern temperate ecosystems—a southern perspective.
595	Trends in Ecology & Evolution 10:143–147. doi: 10.1016/S0169-
596	5347(00)89023-0
597	Moore DM (1967) Chromosome numbers of Falkland Islands Angiosperms. British
98	Antarctic Survey Bulletin 14:69–82.
599	Mora-Osejo LE (1987) Estudios morfológicos, autoecológicos y sistemáticos en
700	Angiospermas. Academia Colombiana de Ciencias Exactas, Físicas y Naturales,
701	Bogotá, DE
702	Möller M, Cronk QCB (1997) Origin and relationships of Saintpaulia (Gesneriaceae)
703	based on ribosomal DNA internal transcribed spacer (ITS) sequences. American
704	Journal of Botany 84:956–965.
705	Naciri Y, Linder HP (2015) Species delimitation and relationships: The dance of the
706	seven veils. Taxon 64:3–16. doi: 10.12705/641.24
707	Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered
708	versus unordered alleles. Genetics 144:1237–1245.
709	R Core Team (2015) R: A language and environment for statistical computing. R
710	Foundation for Statistical Computing, Vienna, Austria. Available at
711	https://www.R-project.org/. https://www.R-project.org
	Rambaut A Drummond AI (2015) TreeAnnotator: MCMC output analysis Version

 abaut A, Suchard MA, Xie W, Drummond AJ (2013) Tracer: MCMC trace analysis tool. Version 1.6.0. Available at http://tree.bio.ed.ac.uk/software/tracer. httptree.bio.ed.ac.uksoftware g T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of <i>Paeonia</i> (Paeoniaceae). American Journal of Botany 84:1120–1136. cinen T, Pennington RT, Lavin M, et al (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39:884–900. doi: 10.1111/j.1365-2699.2011.02644.x aal BA, Hayworth DA, Olsen KM, et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365-294x.1998.00318.x aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
httptree.bio.ed.ac.uksoftware g T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of <i>Paeonia</i> (Paeoniaceae). American Journal of Botany 84:1120–1136. tinen T, Pennington RT, Lavin M, et al (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39:884–900. doi: 10.1111/j.1365-2699.2011.02644.x aal BA, Hayworth DA, Olsen KM, et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365- 294x.1998.00318.x aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
g T, Crawford D, Stuessy T (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of <i>Paeonia</i> (Paeoniaceae). American Journal of Botany 84:1120–1136. tinen T, Pennington RT, Lavin M, et al (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39:884–900. doi: 10.1111/j.1365-2699.2011.02644.x aal BA, Hayworth DA, Olsen KM, et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365- 294x.1998.00318.x aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x
evolution, and biogeography of <i>Paeonia</i> (Paeoniaceae). American Journal of Botany 84:1120–1136. tinen T, Pennington RT, Lavin M, et al (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39:884–900. doi: 10.1111/j.1365-2699.2011.02644.x hal BA, Hayworth DA, Olsen KM, et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365- 294x.1998.00318.x hal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
 kinen T, Pennington RT, Lavin M, et al (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39:884–900. doi: 10.1111/j.1365-2699.2011.02644.x aal BA, Hayworth DA, Olsen KM, et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365-294x.1998.00318.x aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography 39:884–900. doi: 10.1111/j.1365-2699.2011.02644.x aal BA, Hayworth DA, Olsen KM, et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365- 294x.1998.00318.x aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
 aal BA, Hayworth DA, Olsen KM, et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365-294x.1998.00318.x aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
plants: problems and prospects. Mol Ecol 7:465–474. doi: 10.1046/j.1365- 294x.1998.00318.x aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
aal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029. erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
erg O (1988) Taxonomy, phylogeny, and biogeography of the genus <i>Oreobolus</i> R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x
R.Br. (Cyperaceae), with comments on the biogeography of the South Pacific continents. Botanical Journal of the Linnean Society 96:119–195. doi: 10.1111/j.1095-8339.1988.tb00632.x
w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
w J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast
genome sequences to choose noncoding regions for phylogenetic studies in
Angiosperms: the tortoise and the hare III. American Journal of Botany 94:275–288. doi: 10.3732/ajb.94.3.275
mons MP, Ochoterena H (2000) Gaps as characters in sequence-based
phylogenetic analyses. Systematic Biology 47.307–301.
pson BB (1975) Pleistocene changes in the flora of the high tropical Andes. Paleobiology 1:273–294. doi: 10.2307/2400369
erlet P. Gielly L. Pautou G. Bouvet J (1991) Universal primers for amplification
of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109.
JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of
the polyploid species. Systematic Botany 28:723–737. doi:
10.2307/25063919?ref=search-gateway:ab20df06ffd5b47899780d1c7b361d21
cher AGF, Griffiths DJ (2011) HapStar: automated haplotype network layout and
visualization. Molecular Ecology Resources 11:151–153. doi: 10.1111/j.1755-
0998.2010.02890.x
pleton AR (1998) Nested clade analyses of phylogeographic data: testing

 $\begin{smallmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ & 9 & 10 & 112 & 134 & 156 & 178 & 900 & 122 & 223 & 222 & 222 & 223 & 332 & 334 & 356 & 338 & 340 & 442 & 444 & 446 & 474 & 474 &$

ьз

750	hypotheses about gene flow and population history. Mol Ecol 7:381–397.
751	Tremetsberger K, Urtubey E, Terrab A, et al (2009) Pleistocene refugia and
752	polytopic replacement of diploids by tetraploids in the Patagonian and
753	Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae). Mol Ecol
754	18:3668–3682. doi: 10.1111/j.1365-294X.2009.04298.x
755	van der Hammen T (1974) The Pleistocene changes of vegetation and climate in
756	tropical South America. Journal of Biogeography 1:3–26.
757	van der Hammen T, Cleef AM (1986) Development of the high Andean Páramo flora
758	and vegetation. In: Vuilleumier F, Monasterio M (eds) High Altitude Tropical
759	Biogeography, First. Oxford University Press, Inc, New York, pp 153–201
760	Vásquez DLA, Balslev H, Hansen MM, et al (2016) Low genetic variation and high
761	differentiation across sky island populations of Lupinus alopecuroides
762	(Fabaceae) in the northern Andes. Alpine Botany 1-8. doi: 10.1007/s00035-016-
763	0165-7
764	Wondimu T, Gizaw A, Tusiime FM, et al (2013) Crossing barriers in an extremely
765	fragmented system: two case studies in the afro-alpine sky island flora. Plant
766	Syst Evol 300:415-430. doi: 10.1007/s00606-013-0892-9

767 TABLES

Table 1. Molecular diversity indices for ITS and cpDNA (*trn*L-F, *trn*H-*psb*A and *rpl32-trn*L) for each species. N: number of individuals; H: number of haplotypes; hr: haplotype richness (ITS, rarefied to a minimum sample of 15; cpDNA, rarefied to a minimum sample of 9); h, haplotype diversity (\pm SD); π , nucleotide diversity (\pm SD). A, *O. obtusangulus* considered as one species; B, *O. obtusangulus* considered as two species.

Species	Ν	Н	hr	h	π x 100
ITS					
O. cleefii	15	5	5.00	0.70 ± 0.11	0.45 ± 0.30
O. ecuadorensis	24	4	3.12	0.31 ± 0.12	0.01 ± 0.10
O. goeppingeri	75	12	6.09	0.79 ± 0.03	1.15 ± 0.61
O. obtusangulus					
NA	23	8	6.12	0.68 ± 0.10	0.56 ± 0.35
SA	33	5	3.88	0.64 ± 0.06	2.25 ± 1.16
Combined	56	13	6.59	0.82 ± 0.03	2.76 ± 1.39
O. venezuelensis	27	7	5.02	0.63 ± 0.10	1.49 ± 0.80
cpDNA					
O. cleefii	9	4	4.00	0.78 ± 0.11	1.96 ± 1.07
O. ecuadorensis	29	5	3.54	0.72 ± 0.05	0.11 ± 0.07
O. goeppingeri	27	11	5.67	0.84 ± 0.06	2.36 ± 1.17
O. obtusangulus					
NA	20	10	6.35	0.91 ± 0.04	1.70 ± 0.86
SA	19	8	5.22	0.84 ± 0.06	2.20 ± 1.11
Combined	39	18	7.12	0.94 ± 0.02	3.05 ± 1.49
O. venezuelensis	14	8	6.30	0.91 ± 0.05	2.23 ± 1.15

Table 2. Pairwise F_{ST} values amongst species calculated from ITS and cpDNA (*trn*L-F, *trn*H*psb*A and *rpl32-trn*L) considering *O. obtusangulus* as (a) one species and (b) as two species. Values for ITS are below the diagonal and cpDNA above. Bold numbers denote significance at the 5% level. cle: *O. cleefii*, ecu: *O. ecuadorensis*, goe: *O. goeppingeri*, obt: *O. obtusangulus* and ven: *O. venezuelensis*.

(a)

	cle	ecu	goe	obt	ven	
cle		0.797	0.283	0.098	0.317	cle
ecu	0.770		0.732	0.600	0.801	ecu
goe	0.284	0.307		0.229	0.288	goe
obt	0.269	0.360	0.289		0.256	obt
ven	0.314	0.328	0.175	0.291		ven
	cle	ecu	goe	obt	ven	

(b)

	cle	ecu	goe	obt (NA)	obt (SA)	ven	
cle		0.797	0.283	-0.020	0.487	0.317	cle
ecu	0.770		0.732	0.780	0.819	0.801	ecu
goe	0.284	0.307		0.363	0.430	0.288	goe
obt (NA)	0.157	0.710	0.294		0.547	0.399	obt (NA)
obt (SA)	0.595	0.649	0.578	0.620		0.478	obt (SA)
ven	0.314	0.328	0.175	0.339	0.551		ven
	cle	ecu	goe	obt (NA)	obt (SA)	ven	

Group level	Source of variation	Degrees of freedom		Sum of Squares		Variance components		Percentage of variation		Fixation indices	
		ITS	cpDNA	ITS	cpDNA	ITS	cpDNA	ITS	cpDNA	ITS	cpDNA
Species	Among species	4	4	260	2033	1.69	21.67	30.46	47.65	F _{ST} = 0.31***	F _{ST} = 0.48**
	Within species	192	113	741	2689	3.86	23.80	69.54	52.35		
Clusters (all	Among clusters	13	12	442	1925	2.30	15.54	42.95	36.84	Fst = 0.43***	Fs⊤ = 0.37***
lusters)	Within clusters	183	105	560	2798	3.06	26.65	57.05	63.16		
Clusters (northern	Among clusters	9	8	88	885	0.46	7.88	14.50	21.34	Fst = 0.15**	Fst = 0.21***
Andes - NA)	Within clusters	154	90	416	2612	2.70	29.03	85.50	78.66		
Continental regions NA vs SA)	Among regions	1	1	309	746	5.38	19.89	59.49	35.54	F _{CT} = 0.60***	F _{CT} = 0.36**
	Among clusters within regions	12	11	133	1179	0.61	9.41	6.72	16.82	$F_{SC} = 0.17^{**}$	$F_{SC} = 0.26^{**}$
	Within clusters	183	105	560	2798	3.06	26.65	33.79	47.64	$F_{ST} = 0.66^{***}$	F _{ST} = 0.52***
SAMOVA groups	Among groups	2	2	348	999	5.71	25.47	62.19	42.59	F _{CT} = 0.62***	F _{CT} = 0.43***
	Among clusters within groups	11	10	93	926	0.41	7.68	4.51	12.84	$F_{SC} = 0.12^{\star}$	F _{SC} = 0.22***
	Within clusters	183	105	560	2798	3.06	26.65	33.30	44.56	$F_{ST} = 0.67^{***}$	F _{ST} = 0.55***

Table 3. Analysis of molecular variance (AMOVA) results for ITS and cpDNA (trnL-F, trnH-psbA and rpl32-trnL).

1	.5
1	.6
1	.7
1	.8
1	.9
2	20
2	21
2	2
2	23
2	2
2	, <u>,</u>
2	5
2	.0 .7
2	:/
2	8
2	.9
3	50
3	31
3	32
3	3
3	34
3	5
3	6
3	37
3	8
3	9
4	0
4	1
4	2
4	3
4	4
1	5
7	5
	-0
4	: / 0
4	0
4	.9
5	0
5)⊥
5	2
5	53
5	54
5	55
5	66
5	57
5	8
5	59
6	50
6	51
6	52
6	3
6	54
F	55
~	-

Table 4. Molecular diversity indices for ITS and cpDNA (*trn*L-F, *trn*H-*psb*A and *rpl32-trn*L) for each SAMOVA grouping. N: number of individuals; H: number of haplotypes; hr: haplotype richness (ITS, rarefied to a minimum sample of 16; cpDNA, rarefied to a minimum sample of 9); h, haplotype diversity (\pm SD); π , nucleotide diversity (\pm SD).

0.	NI		b	Ŀ	100
SAMOVA group	N	н	nr	n	π x 100
	ITS				
I	164	25	9.20	0.91 ± 0.01	1.18 ± 0.63
II	17	5	4.88	0.58 ± 0.13	2.18 ± 1.17
111	16	2	2.00	0.13 ± 0.11	1.46 ± 0.80
	cpDNA				
I	100	33	7.43	0.95 ± 0.01	3.03 ± 1.46
II	9	4	4.00	0.58 ± 0.18	1.90 ± 1.04
	9	4	4.00	0.75 ± 0.11	0.06 ± 0.05

769 FIGURES

770	Fig. 1 Geographical distribution of Oreobolus in South America based on herbarium
771	records (coloured dots). Sampling localities $(1 - 32)$ and their corresponding cluster
772	(A – N) are also indicated. Arrows denote geographical features.
773	Fig. 2 Maximum clade credibility tree from the *BEAST 2 analysis based on ITS
774	and cpDNA (<i>trn</i> L-F, <i>trn</i> H- <i>psb</i> A and <i>rpl</i> 32- <i>trn</i> L). Numbers above the branches
775	represent posterior probability values. Node bars show 95% HPD. NAC, northern
776	Andean clade.
777	Fig. 3 NeighborNet network for the ITS haplotypes based on the uncorrected-p
778	distances. Haplotypes are coloured according to species. Shared haplotypes are
779	shown in white, with pie charts below (labelled with haplotype number) showing the
780	frequency per species. NA: northern Andes, SA: southern Andes
781	Fig. 4 NeighborNet network for the cpDNA (<i>trn</i> L-F, <i>trn</i> H- <i>psb</i> A and <i>rpl</i> 32- <i>trn</i> L)
782	haplotypes based on the uncorrected-p distances. Haplotypes are coloured according
783	to species. Shared haplotypes are shown in white, with pie charts (labelled with
784	haplotype number) indicating frequency per species shown below. NA: northern
785	Andes, SA: southern Andes
786	Fig. 5 NeighborNet network showing genetic relatedness amongst clusters based on

ITS and cpDNA (trnL-F, trnH-psbA and rpl32-trnL) F_{ST} pairwise values.

788 ELECTRONIC SUPPLEMENTARY MATERIAL

Supplementary Table 1. Geographic coordinates and corresponding cluster of the sampling localities.

N٥	SAMPLING LOCALITY	CLUSTER	LATITUDE	LONGITUDE
1	CHIRRIPO	А	9.48411000	-83.48861000
2	COCUY	В	6.41211667	-72.33128333
3	LA RUSIA	С	5.93951667	-73.07583333
4	IGUAQUE	С	5.68610000	-73.44773333
5	TOTA-BIJAGUAL	В	5.48143333	-72.85540000
6	RABANAL	С	5.40818333	-73.54915000
7	GUERRERO	С	5.22618333	-74.01788333
8	CHINGAZA	D	4.52848333	-73.75866667
9	SUMAPAZ	D	4.28958333	-74.20781667
10	PURACE	E	2.36088333	-76.35038333
11	AZUFRAL	F	1.09543333	-77.68711667
12	VOLCAN CHILES	F	0.80000000	-77.93333333
13	MIRADOR	F	0.56666667	-77.65000000
14	COTOCACHI	F	0.36666667	-78.33333333
15	COTOPAXI	G	-0.66666667	-78.36666667
16	LLANGANATI	G	-1.15000000	-78.30000000
17	ALAO-HUAMBOYA	G	-1.80000000	-78.43333333
18	PARAMO DE LAS CAJAS	Н	-2.81666667	-79.266666667
19	CUENCA-LIMON	Н	-3.00000000	-78.66666667
20	CUENCA-LOJA	Н	-3.16666667	-79.03333333
21	PODOCARPUS	I	-4.40000000	-79.10000000
22	CAJAMARCA	J	-7.05000000	-78.58333333
23	HUASCARAN	J	-9.45000000	-77.26666000
24	VALDIVIA	К	-40.18333333	-73.51666666
25	FIORDO PEEL	L	-50.50000000	-73.73333333
26	MALVINAS	Ν	-51.64297000	-59.89473000
27	MORRO PHILIPPI	L	-51.73333333	-71.50000000
28	MAGALLANES	L	-53.45000000	-71.76666700
29	TIERRA DEL FUEGO	М	-54.76666666	-67.40000000
30	ISLA DE LOS ESTADOS	М	-54.80000000	-64.31666666
31	ISLA NAVARINO	М	-55.07553100	-67.65539600
32	CABO DE HORNOS	М	-55.94407800	-67.28092500

Supplementary Table 2. Sequence information

Supplementary Table 3. Number of individuals successfully sequenced per species per sampling locality for ITS and cpDNA (*trn*L-F, *trn*H-*psb*A and *rpl32-trn*L). Areas where species are not distributed are noted as n.d.

	0. (cleefii	O. ecua	adorensis	O. goe	eppingeri	O. obtu	isangulus	O. vene	ezuelensis
CLUSTER/Sampling locality	ITS	cpDNA	ITS	cpDNA	ITS	cpDNA	ITS	cpDNA	ITS	cpDNA
CLUSTER A										
(1) Chirripo	n.d.	n.d.	n.d.	n.d.	2	-	n.d.	n.d.	-	-
CLUSTER B										
(2) Cocuy	5	4	n.d.	n.d.	3	4	-	-	-	-
(5) Tota-Bijagual	2	1	n.d.	n.d.	2	1	-	-	-	-
CLUSTER C										
(4) Iguaque	-	-	n.d.	n.d.	1	1	-	-	-	-
(3) La Rusia	2	2	n.d.	n.d.	1	-	-	-	2	1
(6) Rabanal	-	-	n.d.	n.d.	2	1	-	-	-	-
(7) Guerrero	1	-	n.d.	n.d.	1	-	-	-	-	-
CLUSTER D										
(8) Chingaza	1	-	n.d.	n.d.	3	1	-	-	2	1
(9) Sumapaz	-	-	n.d.	n.d.	3	2	1	-	4	2
CLUSTER E										
(10) Purace	n.d.	n.d.	n.d.	n.d.	3	3	-	-	-	-
CLUSTER F										
(11) Azufral	4	2	-	-	1	1	-	-	-	-
(12) Volcan Chiles	-	-	1	1	5	-	5	4	-	-
(13) Mirador	-	-	-	-	2	2	1	2	1	1
(14) Cotocachi	n.d.	n.d.	1	2	3	2	-	-	-	-
CLUSTER G										
(15) Cotopaxi	n.d.	n.d.	9	13	2	-	2	2	-	1
(16) Llanganati	n.d.	n.d.	-	1	2	-	2	1	-	-

	ام ما	ام م	2	0	2					
	n.a.	n.a.	3	2	3	-	-	-	-	-
CLUSTER H			_		_			_		
(18) Paramo De Las Cajas	n.d.	n.d.	3	4	2	2	4	3	-	-
(19) Cuenca-Limon	n.d.	n.d.	-	-	2	-	3	3	-	-
(20) Cuenca-Loja	n.d.	n.d.	4	4	11	3	3	3	2	3
CLUSTER I										
(21) Podocarpus	n.d.	n.d.	-	-	18	4	1	1	15	4
CLUSTER J										
(22) Cajamarca	n.d.	n.d.	1	1	3	-	1	1	-	-
(23) Huascaran	n.d.	n.d.	2	1	-	-	-	-	-	-
CLUSTER K										
(24) Valdivia	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	n.d.	n.d.
CLUSTER L										
(25) Fiordo Peel	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	-	n.d.	n.d.
(27) Morro Philippi	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	1	n.d.	n.d.
(28) Magallanes	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	11	7	n.d.	n.d.
CLUSTER M										
(29) Tierra Del Fuego	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	10	5	n.d.	n.d.
(30) Isla De Los Estados	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2	1	n.d.	n.d.
(31) Isla Navarino	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	-	n.d.	n.d.
(32) Cabo De Hornos	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3	3	n.d.	n.d.
CLUSTER N										
(26) Malvinas	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1	1	n.d.	n.d.
TOTAL	15	9	24	29	75	27	56	39	27	14

Supplementary Table 4. Frequency of occurrence of ITS haplotypes (Hn) across clusters and species. Clusters (A - N) as described in Figure 1 and Supplementary Table 1. cle: *O. cleefii*, ecu: *O. ecuadorensis*, goe: *O. goeppingeri*, obt: *O. obtusangulus* and ven: *O. venezuelensis*.

					NOR	THEF	RN AN	IDES					SOUT ANI		١
		А	В	С	D	Е	F	G	Н	Ι	J	к	L	М	Ν
	cle				1										
	ecu				•				•	•					•
Hn1	goe	•	•	•	•	•	•	•	•	•	•		•	•	•
	obt	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	ven	•	<u>.</u>	<u>.</u>	•		•	•		•	•	•	•	•	
	cle	·	1	1	•	·	·	·	•	·	·	•	·	·	•
14-0	ecu	·	·	·	•	·	·	·	•	•	•	•	·	·	•
Hn2	goe	•	·	·	•	·	·	·	•	·	·	•	·	•	•
	ODT	·	·	·	I	·	•	·	•	•	·	•	·	·	•
		•	•	ว	•	•	•	•	•	•	•	•	•	•	•
		•	•	2	•	•	. 2	11	8	•	•	•	•	•	•
Hn3	aoe	•	•	•	•	·	2		0	•	•	•	•	•	•
TINO	obt	•	•	•	•	•	•	•	•	1	•	•	•	•	•
	ven	÷				÷	÷				÷		÷	÷	
	cle						3								
	ecu														
Hn4	qoe						2	3		1					
	obt						1								
	ven														
	cle						1								
	ecu														
Hn5	goe														
	obt				•	•	2	1	•	•	•				•
	ven														
	cle	•	•	•	•	•	•	•	•	•	•		•	•	•
	ecu	•	•	•	•	•	•	1	•	•	•	•	•	•	•
Hn6	goe	·	•	•	•	•	•	•	•	•	•	•	•	·	•
	obt	·	·	·	•	·	·	·	•	·	·	•	·	·	•
	ven	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	cle	•	·	·	·	·	•	·	•	·		•	·	•	•
Un7	ecu	•	·	•	•	·	•	·	•	•	2	•	·	•	•
1 11 17	gue	·	·	·	•	•	·	·	•	•	•	•	·	·	•
	ven	•	·	•	•	•	•	·	•	•	•	•	•	•	•
	cle	· ·	•	•	•	•	•	•	•	•	•		•	· ·	•
	ecu										1				
Hn8	aoe	÷				÷	÷				÷		÷	÷	
	obt										1				
	ven														
	cle														
	ecu														
Hn9	goe					2	6	3	5	13		.			
	obt				•				1						
	ven											.			
	cle											•			
	ecu	•		·	·	•			·	•	·	•		•	·
Hn10	goe	·	1	1	3	1	•	:		•	•	•	•	·	
	obt	•				·		1	·	•	·	•	·	•	·
11-44	ven	•	1	1	2	•	1	•	•	•	•	· ·	•	•	•
Hn11	cie	•	·	·	·	·	•	·	·	·	·	·	·	•	·

	0011											1			
	doo	•	2	1	3	•	3	•	3	•	1	•	•	•	·
	obt	•	2	-	5	•	5	•	5	•		•	•	•	·
	Von	•	•	·	•	•	•	•	·	·	•	•	•	·	·
	ven	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	cie	•	•	·	•	•	•	•	·	·	·	•	•	•	·
11-10	ecu	•	•	·	·	•	•	•	•		·	•	•	·	·
Hn12	goe	•	•	·	•	•	•	•	1	2	·	•	•	•	·
	obt	•	•	·	•	•	•	•	·	·	•	•	•	•	·
	ven			•					•	•					
	cle										•				
	ecu														
Hn13	goe									1					
	obt														
	ven														
	cle														
	ecu														
Hn14	ave									1					
	oht	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	Von	•	•	·	•	•	•	•	·	·	·	•	•	•	•
		•	•	•	•		•	•	•	•	•	•	•	•	· ·
	cie	•	•	·	•	•	•	•	·	·	•	•	·	•	·
11-45	ecu	•	•	·	•	•	•		·	·	•	•	•	•	·
Hn15	goe	•	•	·	•	•	•	1	·	·	•	•	·	•	·
	obt	•	•	•	•	•	•	•	•	•	•	•	•	•	·
	ven				•	•	•				•	•		•	
	cle		•			•		•	•	•	•	•			
	ecu										•				
Hn16	goe		2												
	obt														
	ven				2										
	cle														
	ecu														
Hn17	aoe										1				
	obt														
	ven														
	cle											_			
	ecu	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Hn18	000	•	•	·	•	•	•	•	·	·	1	•	•	•	·
11110	obt	•	•	·	•	•	•	•	·	·		•	•	•	•
	Von	•	•	·	•	•	•	•	•	•	•	•	•	•	·
	ven	•	•	•	•	•	•	•	•	•	•	•	•	•	·
	cie	•	•	·	•	•	•	•	·	·	·	•	•	•	·
11-10	ecu		•	·	•	•	•	•	·	·	•	•	•	•	·
Hn19	goe	2	•	·	•	•	•	•	·	·	•	•	·	•	·
	ODt	•	•	·	•	•	•	•	·	·	•	•	·	•	·
	ven			•	•		•		•	•	•		•	•	•
	cle	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	ecu		•	•	•	•	•	•	•	•	•	•		•	•
Hn20	goe										•				
	obt												10		1
	ven														
	cle														
	ecu														
Hn21	goe														
	obt												1	1	
	ven	-					-								
	cle				•	•			•	•					
	600	•	•	•	•	•	•	•	•	•	•		•	•	•
Hn22	000	•	•	•	•	•	•	•	•	•	•		•	•	•
111122	obt	•	•	•	•	•	•	•	•	•	•	•	2	15	•
	Vor	•	•	•	•	•	•	•	•	•	•		2	10	·
Unan		•	•	•	•	•	•	•	•	•	•	•	•	•	•
nn23	cie	•	•	·	•	•	•	•	·	·	·	l •	•	·	·

	ecu	•	•	•	·	•	•	·	·	•	•	•	•	•	•
	goe											•			
	obt											1			
	ven														
	cle														
	ecu														
Hn24	goe														
	obt						3	2	8						
	ven														
	cle														
	ecu														
Hn25	goe														
	obt												2		
	ven														
	cle														
	ecu														
Hn26	goe														
	obt														
	ven			1											
	cle														
	ecu														
Hn27	goe														
	obt														
	ven				1										
	cle														
	ecu														
Hn28	goe														
	obt														
	ven								1	15					
	cle														
	ecu														
Hn29	goe														
	obt														
	ven				1										
	cle											l .			
	ecu														
Hn30	aoe														
	obt														
	ven								1						
		•		•	•	•	-	-			•		•	-	

Supplementary Table 5. Frequency of occurrence of cpDNA (*trn*L-F, *trn*H-*psb*A and *rpl*32*trn*L) haplotypes (Hc) across clusters and species. Clusters (B – N) as described in Figure 1 and Supplementary Table 1. cle: O. *cleefii*, ecu: O. *ecuadorensis*, goe: O. *goeppingeri*, obt: O. *obtusangulus* and ven: O. *venezuelensis*.

				N	ORTH	IERN	AND	∃S				Sout Ani	HERN	1
		В	С	D	Е	F	G	Н	Ι	J	к	L	М	Ν
	cle		2											
	ecu		•								-		•	
Hc1	goe	•	•	•	•	•	•	•	•	•	-	•	•	•
	obt	•	•	•	•	•	•	•	·	•	-	•	•	•
	ven		•	•	•	•	•	•	•	•	-	•	•	•
	cie	4	•	•	•	·	·	·	·	·	•	•	•	•
Hc2	ace	•	•	•	•	•	•	•	·	•	-	•	•	•
1102	obt	•	•	•	•	3	•	•	•	•	•	•	•	•
	ven						÷	÷	÷	÷				
	cle	1												
	ecu													
Hc3	goe										-			
	obt													
	ven													
	cle	•	•	•	•	2	•	•	•	•	•	•	•	•
	ecu	•	•	•	•	•	•	·	;	•	-	•	•	•
Hc4	goe	•	•	•	•	•	•	•	1	•	-	•	•	•
	UDT VOD	•	•	•	•	•	•	•	·	•	•	•	•	•
		•	•	•		•	•	•	•	•	•			•
	ecu	•	•	•	•	3	9	·	·	·	•	•	•	•
Hc5	aoe	•	•	•	•	0	5					•	•	•
	obt													
	ven										-			
	cle													
	ecu						2	5		1				
Hc6	goe	•	•	•	•	•	•	•	•	•	-	•	•	•
	obt	•	•	•	•	•	•	1	1	1	•	•	•	•
	ven	•	•	•	•	•	•	•	•	•	•	•	•	•
	cie	•	•	•	•	•	•	ว	·	•	-	•	•	•
Hc7	ecu	•	•	•	•	·	4	3	·	·	-	•	•	•
1107	oht	•	•	•	•	•	•	•	•	·	•	•	•	•
	ven						÷	÷						
	cle													<u> </u>
	ecu						1							
Hc8	goe													
	obt													
	ven													
	cle	•	•	•	•	•	•	•	•	•	-	•	•	•
	ecu	•	•	•	•	•	•	•	•	1	•	•	•	•
Hc9	goe	•	•	•	•	·	•	•	•	•	•	•	•	•
	ODT	-	·	•	·	•	•	·	•	•	•	·	·	•
	clo	•	•	•	•	•	•	•	•	•		•	•	
	ecu	•	•	•	•	·	·	•	·	·	•	•	•	•
Hc10	aoe	•	·	•	•	·	•	•	1	·		•	·	•
	obt		÷	÷	÷	÷	÷	÷		÷		÷	÷	÷
	ven										.			

	cle													
	ecu													
Hc11	goe					2		2						
	obt													
	ven													
	cle													
	ecu	•	•	•	•	-	•	•	•	•	-	•	•	•
Hc12	ane	. 2	1	2	•	2	•	3	•	•	•	•	•	•
11012	obt	2		2	•	2	•	5	•	•	•	•	•	•
	Von	•	•	•	•	•	·	•	•	•	•	•	•	·
		•	•	•	•		•	•	•	•	•	•	•	•
	cie	•	•	•	•	•	·	•	•	•	•	•	•	·
11.40	ecu	;	•	;	;	•	·	•	•	•	•	•	·	·
HC13	goe	1	•	1	1	·	·	•	•	·	•	•	·	·
	obt	•	·	•	•	•	•	•	•	•	•	•	•	•
	ven	•	1	2				•				-	•	
	cle													
	ecu													
Hc14	goe	2												
	obt													
	ven			1							Ι.			
	cle													
	ecu	•	•	•	•	•	•	•	•	•			•	•
Hc15	000	•	•	•	1	•	·	•	•	•	•	•	•	•
11010	obt	•	•	•		•	•	•	•	•	•	•	•	•
	Von	•	•	•	•	•	·	•	•	•	•	•	•	·
	ven	•	•	•	•		•	•	•	•	•	•	•	•
	cle	•	•	•	•	•	·	•	·	·	•	•	·	·
	ecu	•	•	•	•	•	·	•	•	•	•	•	•	·
Hc16	goe	•	•	•	1	•	•	•	•	•	•	•	•	•
	obt		•		•				•	•	•	•	•	•
	ven													
	cle													
	ecu													
Hc17	goe					1								
	obt													
	ven													
	cle													
	ecu													
Hc18	ave	•	1	•	•	-	•	•	-	•	-	-	•	
11010	oht	•	•	•	•	•	•	•	•	•	•	•	•	•
	ven	•	•	•	•	•	·	•	•	•	•	•	•	·
		•	•	•	•		•	•	•		•	•	•	•
		•	•	·	·	•	·	·	•	•	•	•	·	·
	ecu	•	•	·	·	•	·	•		•	•	•	•	·
HC19	gue	•	•	·	·	•	·	•	2	•	•	•	•	·
	ODT	•	•	·	·	•	·	•	•	•	•	•	·	·
	ven	•	•	•	•	•	•	•	•	•	•	•	•	•
	cle	•	•	•	•	•	•	•	•	•	•	•	•	•
	ecu		•					•	•	•	•	•		
Hc20	goe		•								.			
	obt											5		1
	ven										L .			
	cle													
	ecu										Ι.			
Hc21	aoe													
	obt	•	•	-	-	-	-	-	-	-		1	4	-
	ven	•	•	•	•	•	•	•	•	•		•	•	•
	cle	•	•	•	•	•	•		•	•	-	•	•	•
	00	•	•	•	•	•	·	•	•	•	•	•	•	•
Legg	0 00	•	•	·	·	•	·	•	•	•	•	•	•	·
TC22	goe	•	•	·	·	•	·	·	•	•		•	•	•
	ODt	•	•	•	•	•	·	•	•	•	1	•	•	•
	ven	•	•		•	•	•				<u> </u>		•	•

	cle													
	ecu													
Hc23	000	•	•	•	•	•	•	•	•	•	·	•	•	•
11020	gue	•	•	•	·	·	•	•	•	•	•	•	•	•
	ODI	•	·	·	·	•	·	•	•	·	•	•	I	·
	ven		•	•	•					•	•			•
	cle													
	ecu													
Hc24	aoe	<u>.</u>												
	oht	-	-	-	-	-	1	-	-	-		-	-	-
	Von	•	•	•	·		•	•	•	•	•	•	•	•
	Ven	•	•	•	•	1	•	•	•	•	•	•	•	•
	cie	•	·	·	•	•	·	•	•	•	•	•	·	•
	ecu	•	•	•	•	•	•	•	•	•	•		•	•
Hc25	goe													
	obt							1						
	ven													
	cle													
	000	•	•	•	·	•	•	•	•	•	•	•	•	•
11-00	ecu	•	•	·	•	•	•	•	•	•	•	•	·	•
HC20	goe	•	·	·	·	•	•	•	•	•	•	:	•	•
	obt	•	•	•	•	•	•	•	•	•	•	1	•	·
	ven			•									•	
	cle													
	ecu													
Hc27	ave													
11021	oht	•	•	•	•	1	. 2	2	•	•	•	•	•	•
	Von	•	•	•	•		2	~	•	•	•	•	•	•
	ven		•	•	•	•	•	•	•	•	•		•	· ·
	cle	•	•	•	•	•	•	•	•	•	•	•	•	•
	ecu									•	•			
Hc28	goe													
	obt							1						
	ven													
	clo	•	· ·	•	•	•	•	•	•		<u> </u>	•	•	<u> </u>
		•	·	•	·	•	•	•	•	•	•	•	•	•
	ecu	•	·	·	·	•	•	•	•	•	•	•	•	•
HC29	goe	•	·	·	•	•	·	•	•	•	•	•	·	•
	obt	•	•	•	•	•	•	1	•	•	•		•	•
	ven													
	cle													
	ecu													
Hc30	aoe													
	oht	-		•		•	•	1	•	•		-	•	•
	Von	•	•	•	•	•	•	1	•	•	•	•	•	•
	Ven	•	•	•	•	•	•	•	•	•	•	•	•	•
	cle	•	·	·	·	·	•	·	·	·	•	•	•	·
	ecu	•	•	•	·	•	•	•	•	·	•	•	•	•
Hc31	goe									•	•			
	obt							2						
	ven													
	cle	-		-	-				-	-				
	ACU	•	•	•	•	•	·	•	•	•	l .	•	·	•
H _222	000	•	•	•	•	•	•	•	•	•	•	•	•	•
11032	90 0	•	·	•	•	•	·	·	•	•	·	•	·	•
	obt	•	·	•	·	2	·	·	•	•	•	•	·	·
	ven				•		•	•	•	•	·	•	•	•
	cle								•	•	.			
	ecu										.			
Hc33	goe										.			
	obt	_		-					-	-		-	3	-
	Ven	•	•	•	•	•	•	•	•	•	·	•	5	•
	00	•	•	•	•	•	•	•	•	•	·	•	•	•
	CIE	•	·	•	·	·	·	·	•	•	·	•	·	•
	ecu	•	·	•	·	·	·	•	•	•	•	•	·	•
Hc34	goe	•	•	•	•	•	•	•	•	•	·	•	•	•
	obt										.	1		
	ven										.			

Hc35	cle											
	ecu											
	goe											
	obt										1	
	ven											
	cle											
	ecu											
Hc36	goe											
	obt											
	ven				1							
	cle											
	ecu											
Hc37	goe											
	obt											
	ven	•				1	1					
	cle											
	ecu											
Hc38	goe											
	obt											
	ven					2						
	cle											
	ecu				•		•	•	•	•	•	
Hc39	goe							•				
	obt				•		•	•	•	•	•	
	ven						3					
	cle				-							
	ecu						•	•	•	•		
Hc40	goe							•				
	obt						•	•	•	•		
	ven						1					

Supplementary Table 6. Spatial analysis of molecular variance (SAMOVA) results for ITS and cpDNA (*trn*L-F, *trn*H-*psb*A and *rpl32-trn*L) showing the variance amongst groups (F_{CT} values) for pre-defined K number of groups.

	κ											
	2	3	4	5	6	7	8	9	10	11	12	13
FCT ITS	0.595	0.622	0.608	0.608	0.603	0.581	0.505	0.507	0.468	0.481	0.504	0.639
Fct cpDNA	0.417	0.426	0.417	0.414	0.412	0.406	0.405	0.410	0.441	0.502	0.675	-

		-		•					-					
	А	В	С	D	Е	F	G	н	I	J	к	L	М	Ν
А		-	-	-	-	-	-	-	-	-	-	-	-	-
в	-		0.134	0.112	0.136	0.001	0.504	0.101	0.211	0.586	-	0.462	0.713	-
С	-	0.092		0.028	0.050	0.038	0.206	-0.003	0.157	0.200	-	0.417	0.690	-
D	-	0.141	0.050		0.023	0.166	0.530	0.220	0.264	0.597	-	0.470	0.740	-
Е	-	0.290	-0.073	0.200		0.048	0.511	0.113	0.076	0.712	-	0.414	0.874	-
F	-	0.147	0.106	0.201	0.101		0.342	0.000	0.109	0.402	-	0.408	0.621	-
G	-	0.267	0.061	0.249	0.206	0.089		0.188	0.452	-0.080	-	0.646	0.794	-
н	-	0.258	0.120	0.258	0.028	0.051	0.052		0.095	0.207	-	0.406	0.581	-
I	-	0.232	0.055	0.202	-0.046	0.141	0.127	0.087		0.532	-	0.444	0.724	-
J	-	0.498	0.065	0.484	0.485	0.406	0.232	0.276	0.122		-	0.698	0.989	-
к	-	-	-	-	-	-	-	-	-	-		-	-	-
L	-	0.629	0.474	0.635	0.482	0.659	0.660	0.661	0.537	0.595	-		0.657	-
М	-	0.702	0.531	0.708	0.601	0.715	0.718	0.704	0.563	0.688	-	0.296		-
Ν	-	-	-	-	-	-	-	-	-	-	-	-	-	
	A	В	С	D	E	F	G	Н	I	J	К	L	М	N

Supplementary Table 7. Pairwise F_{ST} values amongst clusters calculated from ITS and cpDNA (*trn*L-F, *trn*H-*psb*A and *rpl32-trn*L). Results for ITS are
 shown below the diagonal and cpDNA above. Bold numbers indicate significance at the 5% level.

Supplementary Table 8. Molecular diversity indices for ITS and cpDNA (*trn*L-F, *trn*H-*psb*A and *rpl32-trn*L) for each cluster. Clusters (A – N) as described in Figure 1 and Supplementary Table 1. Metrics were not applicable (n.a.) for clusters with less than three individuals. N, number of individuals; h, haplotype diversity (\pm SD); π , nucleotide diversity (\pm SD).

	ITS				cpDNA			
	SAMOVA group	Ν	h	π x100	SAMOVA group	Ν	h	π x 100
А	I	2	n.a.	n.a.	-	-	-	-
В	I	13	0.69 ± 0.12	0.76 ± 0.46	I	10	0.82 ± 0.10	2.34 ± 1.25
С	I	10	0.82 ± 0.10	2.95 ± 1.63	I	5	0.90 ± 0.16	3.95 ± 2.41
D	I	14	0.85 ± 0.07	0.63 ± 0.39	I	6	0.73 ± 0.16	2.78 ± 1.62
Е	I	3	0.67 ± 0.31	0.72 ± 0.63	I	3	1.00 ± 0.27	2.15 ± 1.62
F	I	24	0.86 ± 0.04	0.67 ± 0.40	I	17	0.93 ± 0.04	2.68 ± 1.36
G	I	23	0.76 ± 0.08	0.66 ± 0.40	I	20	0.77 ± 0.08	1.69 ± 0.86
н	I	34	0.83 ± 0.03	0.84 ± 0.48	I	25	0.92 ± 0.03	3.10 ± 1.55
Ι	I	34	0.67 ± 0.05	1.88 ± 0.98	I	10	0.91 ± 0.08	2.20 ± 1.18
J	I	7	0.91 ± 0.10	0.56 ± 0.39	I	3	0.67 ± 0.31	0.09 ± 0.08
К	П	1	n.a.	n.a.	I	1	n.a.	n.a.
L	П	15	0.55 ± 0.14	2.36 ± 1.27	П	8	0.64 ± 0.18	2.13 ± 1.18
М	Ш	16	0.13 ± 0.11	1.46 ± 0.80	Ш	9	0.75 ± 0.11	0.06 ± 0.05
Ν	Ш	1	n.a.	n.a.	П	1	n.a.	n.a.

- **Supplementary Fig. 1** MST and distribution of ITS haplotypes. Numbers refer to haplotypes listed in Supplementary Table 5. Haplotypes are coloured according to species. Shared haplotypes are shown in white. Detail of species sharing haplotypes is given in Fig. 3. Hypothetical haplotypes are represented by filled black circles. Letters on the map refer to clusters as described in Figure 1 and Supplementary Table 3. Pie charts are proportional to sample size for each cluster (N = 1 - 34). Numbers next to each segment refer to haplotype number. NA: northern Andes, SA: southern Andes **Supplementary Fig. 2** MST and distribution of cpDNA (*trn*L-F, *trn*H-*psb*A and rpl32-trnL) haplotypes. Numbers refer to haplotypes listed in Supplementary Table 6. Haplotypes are coloured according to species. Shared haplotypes are shown in white. Detail of species sharing haplotypes is given in Fig. 5. Hypothetical haplotypes are represented by filled black circles, numbers within indicate their number when more than one. Letters on the map refer to clusters as described in Figure 1 and Supplementary Table 3. Pie charts are proportional to sample size for each cluster (N = 1 - 25). Numbers next to each segment refer to haplotype number. NA: northern Andes, SA: southern Andes **Supplementary Fig. 3** NeighborNet network showing genetic relatedness amongst the South American species of *Oreobolus* based on ITS F_{ST} pairwise values considering (a) O. obtusangulus as one species (b) O. obtusangulus as two species Supplementary Fig. 4 NeighborNet network showing genetic relatedness amongst the South American species of Oreobolus based on cpDNA (trnL-F, trnH-psbA and

- *rpl32-trn*L) F_{ST} pairwise values considering (a) *O. obtusangulus* as one species (b)
- *O. obtusangulus* as two species

Figure 5

