76 research outputs found

    Detecting dynamical changes in vital signs using switching Kalman filter

    Get PDF
    Vital signs contain valuable information about patients' health status during their stay in general wards, when the deterioration process begins. The use of methods to predict and detect regime changes such as switching models can help to understand how vital sign dynamics are altered in disease conditions. However, time series of vital signs are remarkably non-stationary in these scenarios. The objective of this study is to quantify the potential bias of switching models in the presence of non-stationarities, when the inputs are spectral, symbolic and entropy indices. To distinguish stationary from non-stationary periods, a test was used to verify the stability of the mean and variance over short periods. Then, we compared the results from a switching Kalman filter (SKF) model trained using indices obtained over stationary periods with a model trained solely over non-stationary periods. It was observed that indices measured over stationary and non-stationary periods were significantly different. The results of switching models were highly dependent on the indices that were used as inputs. The multi-scale entropy (MSE) approach presented the highest correlation values between non-stationary and stationary switches, an average correlation coefficient of 38%

    Early warnings of heart rate deterioration

    Get PDF
    Hospitals can experience difficulty in detecting and responding to early signs of patient deterioration leading to late intensive care referrals, excess mortality and morbidity, and increased hospital costs. Our study aims to explore potential indicators of physiological deterioration by the analysis of vital-signs. The dataset used comprises heart rate (HR) measurements from MIMIC II waveform database, taken from six patients admitted to the Intensive Care Unit (ICU) and diagnosed with severe sepsis. Different indicators were considered: 1) generic early warning indicators used in ecosystems analysis (autocorrelation at-1-lag (ACF1), standard deviation (SD), skewness, kurtosis and heteroskedasticity) and 2) entropy analysis (kernel entropy and multi scale entropy). Our preliminary findings suggest that when a critical transition is approaching, the equilibrium state changes what is visible in the ACF1 and SD values, but also by the analysis of the entropy. Entropy allows to characterize the complexity of the time series during the hospital stay and can be used as an indicator of regime shifts in a patient's condition. One of the main problems is its dependency of the scale used. Our results demonstrate that different entropy scales should be used depending of the level of entropy verified

    Efficient training of RBF networks for classification.

    Get PDF
    Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. We show how RBFs with logistic and softmax outputs can be trained efficiently using the Fisher scoring algorithm. This approach can be used with any model which consists of a generalised linear output function applied to a model which is linear in its parameters. We compare this approach with standard non-linear optimisation algorithms on a number of datasets

    Bayesian inference for wind field retrieval

    Get PDF
    In many problems in spatial statistics it is necessary to infer a global problem solution by combining local models. A principled approach to this problem is to develop a global probabilistic model for the relationships between local variables and to use this as the prior in a Bayesian inference procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks to make local estimates of wind vector probabilities. The resulting inference problem cannot be solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind fields

    The state of the art in integrating machine learning into visual analytics

    Get PDF
    Visual analytics systems combine machine learning or other analytic techniques with interactive data visualization to promote sensemaking and analytical reasoning. It is through such techniques that people can make sense of large, complex data. While progress has been made, the tactful combination of machine learning and data visualization is still under-explored. This state-of-the-art report presents a summary of the progress that has been made by highlighting and synthesizing select research advances. Further, it presents opportunities and challenges to enhance the synergy between machine learning and visual analytics for impactful future research directions

    Quantifying the efficacy of an automated facial coding software using videos of parents

    Get PDF
    Introduction: This work explores the use of an automated facial coding software - FaceReader - as an alternative and/or complementary method to manual coding. Methods: We used videos of parents (fathers, n = 36; mothers, n = 29) taken from the Avon Longitudinal Study of Parents and Children. The videos—obtained during real-life parent-infant interactions in the home—were coded both manually (using an existing coding scheme) and by FaceReader. We established a correspondence between the manual and automated coding categories - namely Positive, Neutral, Negative, and Surprise - before contingency tables were employed to examine the software’s detection rate and quantify the agreement between manual and automated coding. By employing binary logistic regression, we examined the predictive potential of FaceReader outputs in determining manually classified facial expressions. An interaction term was used to investigate the impact of gender on our models, seeking to estimate its influence on the predictive accuracy. Results: We found that the automated facial detection rate was low (25.2% for fathers, 24.6% for mothers) compared to manual coding, and discuss some potential explanations for this (e.g., poor lighting and facial occlusion). Our logistic regression analyses found that Surprise and Positive expressions had strong predictive capabilities, whilst Negative expressions performed poorly. Mothers’ faces were more important for predicting Positive and Neutral expressions, whilst fathers’ faces were more important in predicting Negative and Surprise expressions. Discussion: We discuss the implications of our findings in the context of future automated facial coding studies, and we emphasise the need to consider gender-specific influences in automated facial coding research

    Adding constrained discontinuities to Gaussian process models of wind fields

    Get PDF
    Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling

    Adding constrained discontinuities to Gaussian process models of wind fields

    Get PDF
    Gaussian Processes provide good prior models for spatial data, but can be too smooth. In many physical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind fields. We describe a modelling method for such a constrained discontinuity and demonstrate how to infer the model parameters in wind fields with MCMC sampling

    Online approximations for wind-field models

    Get PDF
    We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations

    Quantifying the efficacy of an automated facial coding software using videos of parents

    Get PDF
    IntroductionThis work explores the use of an automated facial coding software - FaceReader - as an alternative and/or complementary method to manual coding.MethodsWe used videos of parents (fathers, n = 36; mothers, n = 29) taken from the Avon Longitudinal Study of Parents and Children. The videos—obtained during real-life parent-infant interactions in the home—were coded both manually (using an existing coding scheme) and by FaceReader. We established a correspondence between the manual and automated coding categories - namely Positive, Neutral, Negative, and Surprise - before contingency tables were employed to examine the software’s detection rate and quantify the agreement between manual and automated coding. By employing binary logistic regression, we examined the predictive potential of FaceReader outputs in determining manually classified facial expressions. An interaction term was used to investigate the impact of gender on our models, seeking to estimate its influence on the predictive accuracy.ResultsWe found that the automated facial detection rate was low (25.2% for fathers, 24.6% for mothers) compared to manual coding, and discuss some potential explanations for this (e.g., poor lighting and facial occlusion). Our logistic regression analyses found that Surprise and Positive expressions had strong predictive capabilities, whilst Negative expressions performed poorly. Mothers’ faces were more important for predicting Positive and Neutral expressions, whilst fathers’ faces were more important in predicting Negative and Surprise expressions.DiscussionWe discuss the implications of our findings in the context of future automated facial coding studies, and we emphasise the need to consider gender-specific influences in automated facial coding research
    • …
    corecore