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AbstractIn many problems in spatial statistics it is necessary to infer a global problem solution by combininglocal models. A principled approach to this problem is to develop a global probabilistic model forthe relationships between local variables and to use this as the prior in a Bayesian inferenceprocedure. We show how a Gaussian process with hyper-parameters estimated from NumericalWeather Prediction Models yields meteorologically convincing wind �elds. We use neural networksto make local estimates of wind vector probabilities. The resulting inference problem cannot besolved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind�elds.
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2 Bayesian Inference for Wind Field Retrieval1 IntroductionSatellite borne scatterometers are designed to retrieve surface winds over the oceans. These obser-vations enhance the initial conditions supplied to Numerical Weather Prediction (NWP) models(Lorenc et al., 1993) which solve a set of di�erential equations describing the evolution of theatmosphere in space and time. These initial conditions are especially important over the oceansince other observational data is sparse. This paper addresses the issue of wind �eld retrieval fromscatterometer data using neural networks and probabilistic models alone.Simply, a scatterometer measures the amount of radiation scattered back toward the satellite bythe ocean's surface, which is largely related to the local instantaneous wind stress. Under theassumption of a �xed change in wind speed with height, the surface wind stress can be related tothe local 10 m wind vector (O�ler, 1994).The relation between back-scatter (denoted �o)1 and the wind vector, (u; v), is complex to model(Sto�elen and Anderson, 1997b). Most previous work has generated forward models (Sto�elen andAnderson, 1997c), that is the mapping (u; v) ! �o, which is one to one. The inverse mapping,�o ! (u; v), is a one to many mapping since the noise on �o means it becomes very di�cult touniquely determine the wind direction, althought the speed is well de�ned. There are generallytwo dominant wind direction solutions which correspond to winds with roughly 180� di�erentdirections. The inverse problem can be modelled directly using a neural network approach whichproduces encouraging results (Richaume et al., 1998). Our work builds on both approaches, uni�edwithin a Bayesian framework for combining local model predictions with a global prior model(Tarantola, 1987).In earlier work using forward models for wind retrieval, including the systems used operationallyby the European Space Agency and the UK Meteorological O�ce, the wind �elds are obtainedby heuristic methods which rely on a background (or �rst guess) forecast wind �eld from a NWPmodel (Sto�elen and Anderson, 1997a). The method proposed here could include this information,however, due to careful consideration of the prior wind �eld model, it should be possible to achieveautonomous wind �eld retrieval. This implies that it is only necessary to use the scatterometerobservations, which means that wind �elds can be retrieved without an NWP model, and also usedfor validation of NWP models. This is useful since NWP models are not available to all users ofscatterometer data due to their massive computational cost.2 Modelling ApproachThe polar orbiting ERS-1 satellite (O�ler, 1994) carries a scatterometer which obtains observationsof back-scatter in a swathe approximately 500 km wide. The swathe is divided into scenes whichare 500� 500 km square regions each containing 19� 19 cells with a cell size of 50 � 50 km. Thusthere is some overlap between cells. We refer to each cell as a local measurement, while a �eld istaken to denote a spatially connected set of samples from a swathe. Capital letters are used todenote a wind �eld (U; V ) or a �eld of scatterometer measurements �o. Lower case letters areused to represent local measurements in a single cell, and occasionally the subscript i is used toindex the cell location.The aim is to obtain P (U; V j�o), the conditional probability of the wind �eld, (U; V ), given the1The vector �o consists of three individual back-scatter measurements from di�erent viewing angles. In thisarticle we do not make the dependence on incidence angle or view angle explicit, assuming this forms part of thecomputational methodology.



Bayesian Inference for Wind Field Retrieval 3satellite observations, �o. Using Bayes' theorem:P (U; V j�o) = P (�o j U; V )P (U; V )P (�o) : (1)Once the �o have been observed, P (�o) is a constant and thus we can write:P (U; V j�o) / P (�o j U; V )P (U; V ): (2)Since the intention is to use Markov Chain Monte Carlo (Gilks et al., 1996) methods to samplefrom the posterior distribution (2), P (U; V j �o), the normalising constant does not need to beevaluated. P (�o jU; V ) is the likelihood of the observations and P (U; V ) is the prior model. Thenext sections deal with the speci�cation of the models in (2).2.1 Prior wind-�eld modelsThe prior wind-�eld model, P (U; V ), is an informative prior, and will constrain the local solutionsto produce consistent wind �elds. It is required in this approach because the problem is otherwiseill-posed, that is the mapping �o ! (u; v) is multi-valued so no unique local solution exists. Oursolution is to develop a Gaussian Process (GP) based wind-�eld model that is tuned to NWPassimilated data2. This ensures that the wind-�eld model is representative of NWP wind �elds,which are the best available estimates of the true wind �eld.GPs provide a exible class of models (Williams, 1998) particularly when the variables are dis-tributed in space. The wind �eld data is assumed to come from a multi-variate normal distribution,whose covariance matrix is a function of the spatial location of the observations and some phys-ically interpretable parameters. A particular form of GP was chosen to incorporate geophysicalinformation in the prior model (Cornford, 1998; Cornford, 1997).We consider a non-zero mean GP model which produces highly realistic wind �elds. Since there isalso a temporal aspect to the problem, di�erent parameter values are determined for each monthof the year. The probability of a wind �eld, (U; V ), is given by:P (U; V ) = 1(2�)n2 jKuvj 12 exp �12 ��UV �� �mumv��0K�1uv ��UV �� �mumv��!where mu, mv are the mean functions for u and v respectively and Kuv is the joint covariancematrix for (u; v). The covariance matrices are determined by appropriate covariance functionswhich have parameters to represent the variance, characteristic length scales of features, the noisevariance and the ratio of divergence to vorticity in the wind �elds. Tuning these parameters totheir maximum a posteriori probability values using NWP data produces an accurate prior wind-�eld model which requires no additional NWP data once the parameters are determined. Sincethe GP model de�nes the wind over a continuous space domain it can be used for prediction atunmeasured locations, and can easily cope with missing or removed data.2.2 Likelihood modelsThere are two approaches to computing the likelihood, based on the forward and inverse models,outlined below.2Assimilated data means we are using the best guess initial conditions of a NWP model.



4 Bayesian Inference for Wind Field Retrieval2.2.1 Use of forward modelsWe have developed a probabilistic forward model, P (�oi jui; vi), with methods described in (Ramageet al., 1998, this issue). The wind vector in a given cell is assumed to completely determine theobserved �oi values, and thus conditionally on the wind vectors in each cell the �oi values areindependent and: P (�o j U; V ) =Yi P (�oi j ui; vi) (3)where the product is taken over all the cells in the region being considered. This decompositionis only valid for the conditional local model: the observations of �oi and (ui; vi) are not jointlyindependent in this way. (2) can now be written:P (U; V j�o) /  Yi P (�oi j ui; vi)!P (U; V ) (4)this being referred to as `forward' disambiguation.2.2.2 Use of inverse modelsAs shown in (Evans et al., 1998, this issue) the inverse mapping has at least two possible values ateach location, thus a probabilistic model of the form P (ui; vi j �oi ) is essential to fully model themapping. Using Bayes' theorem:P (�oi j ui; vi) = P (ui; vi j �oi )P (�oi )P (ui; vi) : (5)Having observed the �o values P (�oi ) is constant and (5) can be written:P (�oi j ui; vi) / P (ui; vi j �oi )P (ui; vi) : (6)Rewriting (4) using (6) gives:P (U; V j�o) /  Yi P (ui; vi j �oi )P (ui; vi) !P (U; V ); (7)this being referred to as `inverse' disambiguation. Using Bayes' theorem in this form has been calledthe Scaled-Likelihood method (Morgan and Boulard, 1995) although it has not been previouslyapplied in this spatial context.3 ApplicationWhen applying the models in an operational environment a modular design is proposed (Fig.1). Initially the scatterometer data is pre-processed using the prior unconditional density modelfor �o to remove outliers. This model is currently under development using a specially modi�edGenerative Topographic Mapping (Bishop et al., 1998) with a conical latent space. The selected�o data is then forward propagated through the inverse model to produce P (ui; vi j �oi ). Someproblem speci�c methods (not discussed here) are used to select an initial wind �eld. Startingfrom this point the posterior distribution, P (U; V j�o), is sampled from using either (4) or (7).
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Figure 1: A schematic of the proposed methodology for operational wind �eld retrieval. Thelikelihood and prior models are denoted by L and P respectively. Either the forwardor the inverse models can be used to obtain the �nal wind �eld.A Markov Chain Monte Carlo approach using a modi�ed3 Metropolis algorithm (Gilks et al., 1996)is applied. We also propose to use optimisation methods to quickly �nd the modes4. The problemis complicated by the high dimensionality of P (U; V j �o) which is typically of the order of fourhundred.Thus good local inverse and forward models are essential to accurate wind �eld retrieval. Thismodular scheme makes each part of the modelling process more focussed, while providing anelegant solution to a complex problem. If necessary individual models (such as the forward model)can be updated or changed while the other models can be kept �xed.4 Preliminary ResultsAt the time of writing, not all components of the operational model proposed above were completed.Fig. 2 shows an example of the results of the application of (7) to a real wind �eld. The initialisationroutine (which is itself complex) produces an excellent initial wind �eld (Fig. 2a) with a few poorwind vectors. The most probable wind �eld (Fig. 2b), which occurrs at time = 1323, can be seento resemble the NWP winds (Fig. 2c), although the trough is more marked and positioned furthersouth and east. It is these situations where the scatterometer data will improve the estimationof NWP initial conditions, since it is very likely that the scatterometer wind �eld is more reliablethan the NWP forecast wind �eld.Fig. 2d shows the evolution of the energy (which is equal to the un-normalised negative logprobability of the wind �eld) during Metropolis sampling from the posterior (7). The energy falls3The modi�cations take advantage of our knowledge of the likely ambiguities.4It is known that the local inverse model has dominantly bimodal solutions, and it is suggested that this is alsothe case for the global solution. Thus a scaled conjugate gradient algorithm could be used to �nd both modes.
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(d)Figure 2: Results of running the MCMC sampling on a wind �eld from the North Atlantic onthe 4th of January 1994. (a) the initialised wind �eld from the inverse model, (b)the most probable wind �eld from (7), (c) the `true' NWP wind �eld and (d) theevolution of the energies in the Markov chain. The position of the trough is markedby a solid line in (b) and (c).



Bayesian Inference for Wind Field Retrieval 7very rapidly in the �rst 50 iterations, and then remains relatively constant as the sampling exploresthe mode.4.1 DiscussionThe results presented indicate that the methodology is operationally viable. Fig. 2a indicates thatthere are some cells for which the inverse model does not give a good initialisation. These poorlocal predictions are believed to result from unreliable �o measurements and thus the addition ofthe unconditional prior model for �o may alleviate these problems.Comparing Fig. 2b and 2c shows that the NWP winds are not always reliable especially wherethere are rapid spatial changes in direction. However, NWP winds are used to train all the models,and thus careful data selection is vital to achieving reliable training sets for neural network modelsfor wind �eld retrieval.5 ConclusionsWe have presented an elegant framework for the retrieval of wind �elds using neural networktechniques from satellite scatterometer data. The modular approach adopted mean that modelchanges are simple to implement, since each model has a well de�ned role. In addition to theunconditional density model for �o, we are developing wind �eld models to include atmosphericfronts (Cornford et al., 1999).Improving the forward and inverse models using better training data should further improve results.This will be vital when the methods are applied to more complex wind �elds than that in Fig.2. The approach taken will produce reliable, autonomously disambiguated, scatterometer derivedwind �elds. The use of Bayesian methods allows the assessment of posterior uncertainty.AcknowledgementsThis work is supported by the European Union funded NEUROSAT programme (grant numberENV4 CT96-0314) and also EPSRC grant GR/L03088 Combining Spatially Distributed Predictionsfrom Neural Networks. Thanks to MSc student David Evans for supplying the results of theapplication of `inverse' disambiguation. Thanks also to David O�ler for his useful commentsduring the project.ReferencesBishop, C. M., M. Svensen, and C. K. I. Williams 1998. GTM: The Generative TopographicMapping. Neural Computation 10, 215{234.Cornford, D. 1997. Random Field Models and Priors on Wind. Technical Report NCRG/97/023,Neural Computing Research Group, Aston University, Aston Triangle, Birmingham, UK.Available from: http://www.ncrg.aston.ac.uk/.Cornford, D. 1998. Non-Zero Mean Gaussian Process Prior Wind Field Models. Technical Re-port NCRG/98/020, Neural Computing Research Group, Aston University, Aston Triangle,
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