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Abstract

In many problems in spatial statistics it is necessary to infer a global problem solution by combining
local models. A principled approach to this problem is to develop a global probabilistic model for
the relationships between local variables and to use this as the prior in a Bayesian inference
procedure. We show how a Gaussian process with hyper-parameters estimated from Numerical
Weather Prediction Models yields meteorologically convincing wind fields. We use neural networks
to make local estimates of wind vector probabilities. The resulting inference problem cannot be
solved analytically, but Markov Chain Monte Carlo methods allow us to retrieve accurate wind

fields.
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1 Introduction

Satellite borne scatterometers are designed to retrieve surface winds over the oceans. These obser-
vations enhance the initial conditions supplied to Numerical Weather Prediction (NWP) models
(Lorenc et al., 1993) which solve a set of differential equations describing the evolution of the
atmosphere in space and time. These initial conditions are especially important over the ocean
since other observational data is sparse. This paper addresses the issue of wind field retrieval from
scatterometer data using neural networks and probabilistic models alone.

Simply, a scatterometer measures the amount of radiation scattered back toward the satellite by
the ocean’s surface, which is largely related to the local instantaneous wind stress. Under the
assumption of a fixed change in wind speed with height, the surface wind stress can be related to
the local 10 m wind vector (Offiler, 1994).

The relation between back-scatter (denoted o°)! and the wind vector, (u,v), is complex to model
(Stoffelen and Anderson, 1997b). Most previous work has generated forward models (Stoffelen and
Anderson, 1997c), that is the mapping (u,v) — o, which is one to one. The inverse mapping,
0° — (u,v), is a one to many mapping since the noise on o° means it becomes very difficult to
uniquely determine the wind direction, althought the speed is well defined. There are generally
two dominant wind direction solutions which correspond to winds with roughly 180° different
directions. The inverse problem can be modelled directly using a neural network approach which
produces encouraging results (Richaume et al., 1998). Our work builds on both approaches, unified
within a Bayesian framework for combining local model predictions with a global prior model
(Tarantola, 1987).

In earlier work using forward models for wind retrieval, including the systems used operationally
by the European Space Agency and the UK Meteorological Office, the wind fields are obtained
by heuristic methods which rely on a background (or first guess) forecast wind field from a NWP
model (Stoffelen and Anderson, 1997a). The method proposed here could include this information,
however, due to careful consideration of the prior wind field model, it should be possible to achieve
autonomous wind field retrieval. This implies that it is only necessary to use the scatterometer
observations, which means that wind fields can be retrieved without an NWP model, and also used
for validation of NWP models. This is useful since NWP models are not available to all users of
scatterometer data due to their massive computational cost.

2 Modelling Approach

The polar orbiting ERS-1 satellite (Offiler, 1994) carries a scatterometer which obtains observations
of back-scatter in a swathe approximately 500 £m wide. The swathe is divided into scenes which
are 500 x 500 km square regions each containing 19 x 19 cells with a cell size of 50 x 50 km. Thus
there is some overlap between cells. We refer to each cell as a local measurement, while a field is
taken to denote a spatially connected set of samples from a swathe. Capital letters are used to
denote a wind field (U, V) or a field of scatterometer measurements X°. Lower case letters are
used to represent local measurements in a single cell, and occasionally the subscript ¢ is used to
index the cell location.

The aim is to obtain P(U,V | £°), the conditional probability of the wind field, (U, V), given the

1The vector o consists of three individual back-scatter measurements from different viewing angles. In this
article we do not make the dependence on incidence angle or view angle explicit, assuming this forms part of the
computational methodology.
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satellite observations, 3°. Using Bayes’ theorem:

P(Z° |U,V)P(U,V)
P(Z°)

P(U,V|S°) =

Once the X° have been observed, P(X°) is a constant and thus we can write:
P(U,V | S°) « P(2° |U,V)P(U,V). 2)

Since the intention is to use Markov Chain Monte Carlo (Gilks et al., 1996) methods to sample
from the posterior distribution (2), P(U,V | ¥°), the normalising constant does not need to be
evaluated. P(X°|U,V) is the likelihood of the observations and P(U,V) is the prior model. The
next sections deal with the specification of the models in (2).

2.1 Prior wind-field models

The prior wind-field model, P(U, V), is an informative prior, and will constrain the local solutions
to produce consistent wind fields. It is required in this approach because the problem is otherwise
ill-posed, that is the mapping ° — (u,v) is multi-valued so no unique local solution exists. Our
solution is to develop a Gaussian Process (GP) based wind-field model that is tuned to NWP
assimilated data®. This ensures that the wind-field model is representative of NWP wind fields,
which are the best available estimates of the true wind field.

GPs provide a flexible class of models (Williams, 1998) particularly when the variables are dis-
tributed in space. The wind field data is assumed to come from a multi-variate normal distribution,
whose covariance matrix is a function of the spatial location of the observations and some phys-
ically interpretable parameters. A particular form of GP was chosen to incorporate geophysical
information in the prior model (Cornford, 1998; Cornford, 1997).

We consider a non-zero mean GP model which produces highly realistic wind fields. Since there is
also a temporal aspect to the problem, different parameter values are determined for each month
of the year. The probability of a wind field, (U, V), is given by:

= e (5 (- ]) w2 (1 [2])

where m,,, m, are the mean functions for u and v respectively and K, is the joint covariance
matrix for (u,v). The covariance matrices are determined by appropriate covariance functions
which have parameters to represent the variance, characteristic length scales of features, the noise
variance and the ratio of divergence to vorticity in the wind fields. Tuning these parameters to
their maximum a posteriori probability values using NWP data produces an accurate prior wind-
field model which requires no additional NWP data once the parameters are determined. Since
the GP model defines the wind over a continuous space domain it can be used for prediction at
unmeasured locations, and can easily cope with missing or removed data.

2.2 Likelihood models

There are two approaches to computing the likelihood, based on the forward and inverse models,
outlined below.

2 Assimilated data means we are using the best guess initial conditions of a NWP model.
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2.2.1 Use of forward models

We have developed a probabilistic forward model, P(o2|u;, v;), with methods described in (Ramage
et al., 1998, this issue). The wind vector in a given cell is assumed to completely determine the
observed o values, and thus conditionally on the wind vectors in each cell the o values are
independent and:

P(=°|U,V) = HP © | ui, v) (3)

where the product is taken over all the cells in the region being considered. This decomposition
is only valid for the conditional local model: the observations of &2 and (u;,v;) are not jointly
independent in this way. (2) can now be written:

P(U,V|2°) (HP uz,vl>P(U,V) (4)

this being referred to as ‘forward’ disambiguation.

2.2.2 Use of inverse models

As shown in (Evans et al., 1998, this issue) the inverse mapping has at least two possible values at
each location, thus a probabilistic model of the form P(u;,v; | ?) is essential to fully model the
mapping. Using Bayes’ theorem:

P(ui,vi | 07)P(a7)

Plog [ ui,vi) = P(ui,v;) ’
2y Y1

(5)

Having observed the X values P(o?) is constant and (5) can be written:

P(ug,v; | o?
P(o? | u;,v;) %

Rewriting (4) using (6) gives:

P(U,V | 2°) (H %) P(UV), (7)

i

this being referred to as ‘inverse’ disambiguation. Using Bayes’ theorem in this form has been called
the Scaled-Likelihood method (Morgan and Boulard, 1995) although it has not been previously
applied in this spatial context.

3 Application

When applying the models in an operational environment a modular design is proposed (Fig.
1). Initially the scatterometer data is pre-processed using the prior unconditional density model
for o° to remove outliers. This model is currently under development using a specially modified
Generative Topographic Mapping (Bishop et al., 1998) with a conical latent space. The selected
o data is then forward propagated through the inverse model to produce P(u;,v; | 7). Some
problem specific methods (not discussed here) are used to select an initial wind field. Starting
from this point the posterior distribution, P(U,V | 3°), is sampled from using either (4) or (7).
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Figure 1: A schematic of the proposed methodology for operational wind field retrieval. The
likelihood and prior models are denoted by L and P respectively. Either the forward
or the inverse models can be used to obtain the final wind field.

A Markov Chain Monte Carlo approach using a modified® Metropolis algorithm (Gilks et al., 1996)
is applied. We also propose to use optimisation methods to quickly find the modes*. The problem
is complicated by the high dimensionality of P(U,V | £°) which is typically of the order of four
hundred.

Thus good local inverse and forward models are essential to accurate wind field retrieval. This
modular scheme makes each part of the modelling process more focussed, while providing an
elegant solution to a complex problem. If necessary individual models (such as the forward model)
can be updated or changed while the other models can be kept fixed.

4 Preliminary Results

At the time of writing, not all components of the operational model proposed above were completed.
Fig. 2 shows an example of the results of the application of (7) to a real wind field. The initialisation
routine (which is itself complex) produces an excellent initial wind field (Fig. 2a) with a few poor
wind vectors. The most probable wind field (Fig. 2b), which occurrs at time = 1323, can be seen
to resemble the NWP winds (Fig. 2c), although the trough is more marked and positioned further
south and east. It is these situations where the scatterometer data will improve the estimation
of NWP initial conditions, since it is very likely that the scatterometer wind field is more reliable
than the NWP forecast wind field.

Fig. 2d shows the evolution of the energy (which is equal to the un-normalised negative log
probability of the wind field) during Metropolis sampling from the posterior (7). The energy falls

3The modifications take advantage of our knowledge of the likely ambiguities.
41t is known that the local inverse model has dominantly bimodal solutions, and it is suggested that this is also
the case for the global solution. Thus a scaled conjugate gradient algorithm could be used to find both modes.
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Figure 2: Results of running the MCMC sampling on a wind field from the North Atlantic on
the 4th of January 1994. (a) the initialised wind field from the inverse model, (b)
the most probable wind field from (7), (c) the ‘true’ NWP wind field and (d) the
evolution of the energies in the Markov chain. The position of the trough is marked
by a solid line in (b) and (c).
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very rapidly in the first 50 iterations, and then remains relatively constant as the sampling explores
the mode.

4.1 Discussion

The results presented indicate that the methodology is operationally viable. Fig. 2a indicates that
there are some cells for which the inverse model does not give a good initialisation. These poor
local predictions are believed to result from unreliable ® measurements and thus the addition of
the unconditional prior model for ® may alleviate these problems.

Comparing Fig. 2b and 2c shows that the NWP winds are not always reliable especially where
there are rapid spatial changes in direction. However, NWP winds are used to train all the models,
and thus careful data selection is vital to achieving reliable training sets for neural network models
for wind field retrieval.

5 Conclusions

We have presented an elegant framework for the retrieval of wind fields using neural network
techniques from satellite scatterometer data. The modular approach adopted mean that model
changes are simple to implement, since each model has a well defined role. In addition to the
unconditional density model for o®, we are developing wind field models to include atmospheric
fronts (Cornford et al., 1999).

Improving the forward and inverse models using better training data should further improve results.
This will be vital when the methods are applied to more complex wind fields than that in Fig.
2. The approach taken will produce reliable, autonomously disambiguated, scatterometer derived
wind fields. The use of Bayesian methods allows the assessment of posterior uncertainty.
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