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Abstract. We study online approximations to Gaussian process models
for spatially distributed systems. We apply our method to the prediction
of wind fields over the ocean surface from scatterometer data. Our ap-
proach combines a sequential update of a Gaussian approximation to the
posterior with a sparse representation that allows to treat problems with
a large number of observations.

1 Introduction

A common scenario of applying online or sequential learning methods [Saad 1998]
is when the amount of data is too large to be processed by more efficient offline
methods or there is no possibility to store the arriving data. In this article we
consider the area of spatial statistics [Cressie 1991], where the data is observed at
different spatial locations and the aim is to build a global Bayesian model of the
local observations based on a Gaussian Process prior distribution. Specifically,
we consider scatterometer data obtained from the ERS-2 satellite [Offiler 1994]
where the aim is to obtain an estimate of the wind fields which the scatterometer
indirectly measured.

The scatterometer measures the radar backscatter from the ocean surface at
a wavelength of approximately 5 cm. The strength of the returned signal gives
an indication of the wind speed and direction, relative to scatterometer beam
direction. As shown in [Stoffelen and Anderson 1997b] the measured backscat-
ter behaves as a truncated Fourier expansion in relative wind direction. Thus
while the wind vector to scatterometer observations map is one-to-one, its in-
verse is one-to-many [Evans et al. 2000]. This makes the retrieval of a wind field a
complex problem with multiple solutions. Nabney et al. [2000] have recently pro-
posed a Bayesian framework for wind field retrieval combining a vector Gaussian
process prior model with local forward (wind field to scatterometer) or inverse
models.

One problem with the approach outlined in [Nabney et al. 2000] is that the
vector Gaussian process requires a matrix inversion which scales as n3. The
backscatter is measured over 50 x 50 km cells over the ocean and the total
number of observations acquired on a given orbit can be several thousand.
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In this paper we show that we can produce an efficient approximation to the
posterior distribution of the wind field by applying a Bayesian online learning
approach [Opper 1998] to Gaussian process models following [Csat6 and Opper
2001], which computes the approximate posterior by a single sweep through the
data. The computational complexity is further reduced by constructing a sparse
sequential approximate representation to the posterior process.

2 Processing Scatterometer Data

Scatterometers are commonly used to retrieve wind vectors over ocean surfaces.
Current methods of transforming the observed values (scatterometer data, de-
noted as vector s or 8; at a given spatial location) into wind fields can be split
into two phases: local wind vector retrieval and ambiguity removal [Stoffelen
and Anderson 1997a] where one of the local solutions is selected as the true
wind vector. Ambiguity removal often uses external information, such as a Nu-
merical Weather Prediction (NWP) forecast of the expected wind field at the
time of the scatterometer observations. We are seeking a method of wind field
retrieval which does not require external data.

In this paper we use a mixture density network (MDN) [Bishop 1995] to
model the conditional dependence of the local wind vector z; = (ui,vi) on the
local scatterometer observations s;:
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where w is used to denote the parameters of the MDN, ¢ is a Gaussian distri-
bution with parameters functions of w and s;. The parameters of the MDN are
determined using an independent training set [Evans et al. 2000] and are consid-
ered known in this application. The MDN which has four Gaussian component
densities captures the ambiguity of the inverse problem.

In order to have a global model from the localised wind vectors, we have to
combine them. We use a zero-mean vector GP to link the local inverse mod-
els [Nabney et al. 2000]:
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where z = [z1,...,zn]" is the concatenation of the local wind field components,

Wy = {Wy(xi,%j)}ij=1,...,~n is the prior covariance matrix for the vector z (de-
pendent on the spatial location of the wind vectors), and pg is po marginalised
at zi, a zero-mean Gaussian with covariance Wy;. The choice of the kernel func-
tion Wy (x,y) fully specifies our prior beliefs about the model. Notice also that
for any given location we have a two-dimensional wind vector, thus the output of
the kernel function is a 2 x 2 matriz, details can be found in [Nabney et al. 2000].
The link between two different wind field directions is made through the kernel
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function — the larger the kernel value, the stronger the “coupling” between the
two corresponding wind fields is. The prior Gaussian process is tuned carefully
to represent features seen in real wind fields.

Since all quantities involved are Gaussians, we could, in principle, compute
the resulting probabilities analytically, but this computation is practically in-
tractable: the number of mixture elements from q(z) is 4™, extremely high even
for moderate values of N. Instead, we will apply the online approximation of
[Csaté and Opper 2001] to have a jointly Gaussian approximation to the poste-
rior at all data points. However, we know that the posterior distribution of the
wind field given the scatterometer observations is multi-modal, with in general
two dominating and well separated modes. We might thus expect that the online
implementation of the Gaussian process will track one of these posterior modes.
Results show that this is indeed the case, although the order of the insertion of
the local observations appears to be important.

3 Online learning for the vector Gaussian Process

Gaussian processes belong to the family of Bayesian [Bernardo and Smith 1994]
models. However, contrary to the finite-dimensional case, here the “model pa-
rameters” are continuous: the GP priors specify a Gaussian distribution over a
function space. Due to the vector GP, the kernel function Wy(x,y) is a 2 x 2
matrix, specifying the pairwise cross-correlation between wind field components
at different spatial positions.

Simple moments of GP posteriors (which are usually non Gaussian) have a
parametrisation in terms of the training data [Opper and Winther 1999] which
resembles the popular kernel-representation [Kimeldorf and Wahba 1971]. For
all spatial locations x the mean and covariance function of the vectors z, € R?
are represented as

() = ) L Wolx,xi) - ez (d)

(3)
cov(zy,zy) = Wolx, ) + D D1 Wolx,xi) - Ca(ij) - Wolx;,y)

where a2 (1), 2(2),...,%,(N) and {C,(ij)}i ;=1 n are parameters which will be
updated sequentially by our online algorithm. Before doing so, we will (for nu-
merical convenience) represent the vectorial process by a scalar process with
twice the number of observations, i.e. we set
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Lt ]
and write (ignoring the superscripts)
() = 3 N Kolx,x) (i)
cov(fy, fy) = Kolx,y) + Y 311 Ko(x,x1)C(1)Ko x5, )

(4)
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Fig. 1. Tllustration of the elements used in the update eq. (6).

where &« = [t7,...,00on]T and C = {C(ij)},j=1,... .2~ are rearrangements of the
parameters from eq. (3).

The online approximation for GP learning [Csaté and Opper 2001] approxi-
mates the posterior by a Gaussian at every step. For a new observation st 1, the
previous approximation to the posterior q¢(z) together with a local ”likelihood”
factor (from eq. (2))

Pm(Zes1/8¢41, W)P(Sey1)
Pc(zer1Wo,e41)

are combined into a new posterior using Bayes rule. Computing its mean and
covariance enable us to create an updated Gaussian approximation q¢;1(z) at
the next step. §(z) = qn41(2) is the final result of the online approximation.
This process can be formulated in terms of updates for the parameters & and C
which determine the mean and covariance:
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with Vi1 = CtK[Ot+1] + I[Zt+1] (6)
Cip1 = C +viyq

with elements th+1] and I[ZH” are shown in Fig. 1 and
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and (z¢;1) is a vector, implying vector and matrix quantities in (6). Function
g({z¢11)) is easy to compute analytically because it just requires the two dimen-
sional marginal distribution of the process at the observation point s¢;1. Fig. 2
shows the results of the online algorithm applied on a sample wind field, details
can be found in the figure caption.

3.1 Obtaining sparsity in Wind Fields

Each time-step the number of nonzero parameters will be increased in the update
equation. This forces us to use a further approximation which reduces the number
of supporting examples in the representations eq. (5) to a smaller set of basis
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NWP Prediction Most frequent online result

Fig. 2. The NWP wind field estimation (a), the most frequent (b) and the second most
frequent (c) online solution together with a bad solution. The assessment of good/bad
solution is based on the value of the relative weight from Section 3.2. The gray-scale
background indicates the model confidence (Bayesian error-bars) in the prediction,
darker shade meaning more confidence.

vectors. Following our approach in [Csaté and Opper 2001] we remove the
last data element when a certain score (defined by the feature space geometry
associated to the kernel Ko) suggests that the approximation error is small. The
remaining parameters are readjusted to partly compensate for the removal as:

&—at) —Q g Na*
Q=Q" Qa"Q" (8)
¢=c +Q*q*(7”c*q*(*”Q*T - Q*q*(*”C*T - C*q*[—l)Q*T
where Q71 = {Ko(xi,%j)}ij=1,... 2~ is the inverse of the Gram matrix, the ele-
ments being shown in Fig. 3 (a*, ¢* and C* are two-by-two matrices).

The presented update is optimal in the sense that the posterior means of
the process at data locations are not affected by the approximation [Csaté and
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Fig. 3. Decomposition of model parameters for the update equation (8).

Opper 2001]. The change of the mean at the location to be deleted is used as a
score which measures the loss. This change is (again, very similar to the results
from [Csaté and Opper 2001]) measured using the score ¢ = [|(q*) 'a*|| (the
parameters of the vector GP can have any order, we can compute the score for
every spatial location).

Removing the data locations with low score sequentially leaves only a small
set of so-called basis points upon which all further prediction will depend.

Our preliminary results are promising: Fig. 4 shows the resulting wind field
if 85 of the spatial knots are removed from the presentation eq. (5). On the
right-hand side the evolution of the KL-divergence and the sum-squared errors
in the means between the vector GP and a trimmed GP using eq. (8) are shown.
as a function of the number of deleted points. Whilst the approximation of the
posterior variance decays fast, the the predictive mean is fairly reliable against
deleting.

3.2 Measuring the Relative Weight of the Approximation

An exact computation of the posterior would lead to a multi-modal distribution
of wind fields at each data-point. This would correspond to a mixture of GPs as
a posterior rather than to a single GP that is used in our approximation. If the
individual components of the mixture are well separated, we may expect that our
online algorithm will track modes with significant underlying probability mass
to give a relevant prediction. However, this will depend on the actual sequence of
data-points that are visited by the algorithm. To investigate the variation of our
wind field prediction with the data sequence, we have generated many random
sequences and compared the outcomes based on a simple approximation for the
relative mass of the multivariate Gaussian component.

Assuming an online solution of the marginal distribution (2, f) at a separated
mode, we have the posterior at the local maximum expressed:

q(2) oy (2m) 2N/2 (g7 1/2 (9)

with q(2) from eq. (2), y1 the weight of the component of the mixture to which
our online algorithm had converged, and we assume the local curvature is also
well approximated by s
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85% removed Error measures
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Fig. 4. (a) The predicted wind fields when 85% of the modes has been removed (from
Fig. 2). The prediction is based only on basis vectors (circles). The model confidence
is higher at these regions. (b) The difference between the full solution and the approx-
imations using the squared difference of means (continuous line) and the KL-distance
(dashed line) respectively.

Having two different online solutions (2, ,21 ) and (2, ,21 ), we find from eq (9)
that the proportion of the two weights is given by
vi a2y,

Y2 q(g,)E2[172
This helps us to estimate, up to an additive constant, the “relative weight” of
the wind field solutions, helping us to assess the quality of the approximation
we arrived at. Results, using multiple runs on a wind field data confirm this
expectation, the correct solution (Fig. 2.b) has large value and high frequency if
doing multiple runs.

(10)

4 Discussion

In the wind field example the online and sparse approximation allows us to tackle
much larger wind fields than previously possible. This suggests that we will be
able to retrieve wind fields using only scatterometer observations, by utilising
all available information in the signal.

Proceeding with the removal of the basis points, it would be desirable to
have an improved update for the vector GP parameters that leads to a better
estimation of the posterior kernel (thus of the Bayesian error-bars).

At present we obtain different solution for different ordering of the data.
Future work might seek to build an adaptive classifier that works on the family
of online solutions and utilising the relative weights.



However, a more desirable method would be to extend our online approach
to mixtures of GPs in order to incorporate the multi-modality of the posterior
process in a principled way.
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