
To appear in: International Conferene for Neural Networks - 2001 WienaOnline Approximations for Wind-Field ModelsLehel Csat�o, Dan Cornford, and Manfred OpperNeural Computing Researh Group, Aston UniversityB4 7ET Birmingham, United Kingdomfsatol,ornfosd,oppermg�aston.a.ukAbstrat. We study online approximations to Gaussian proess modelsfor spatially distributed systems. We apply our method to the preditionof wind �elds over the oean surfae from satterometer data. Our ap-proah ombines a sequential update of a Gaussian approximation to theposterior with a sparse representation that allows to treat problems witha large number of observations.1 IntrodutionA ommon senario of applying online or sequential learning methods [Saad 1998℄is when the amount of data is too large to be proessed by more eÆient o�inemethods or there is no possibility to store the arriving data. In this artile weonsider the area of spatial statistis [Cressie 1991℄, where the data is observed atdi�erent spatial loations and the aim is to build a global Bayesian model of theloal observations based on a Gaussian Proess prior distribution. Spei�ally,we onsider satterometer data obtained from the ERS-2 satellite [OÆler 1994℄where the aim is to obtain an estimate of the wind �elds whih the satterometerindiretly measured.The satterometer measures the radar baksatter from the oean surfae ata wavelength of approximately 5 m. The strength of the returned signal givesan indiation of the wind speed and diretion, relative to satterometer beamdiretion. As shown in [Sto�elen and Anderson 1997b℄ the measured baksat-ter behaves as a trunated Fourier expansion in relative wind diretion. Thuswhile the wind vetor to satterometer observations map is one-to-one, its in-verse is one-to-many [Evans et al. 2000℄. This makes the retrieval of a wind �eld aomplex problem with multiple solutions. Nabney et al. [2000℄ have reently pro-posed a Bayesian framework for wind �eld retrieval ombining a vetor Gaussianproess prior model with loal forward (wind �eld to satterometer) or inversemodels.One problem with the approah outlined in [Nabney et al. 2000℄ is that thevetor Gaussian proess requires a matrix inversion whih sales as n3. Thebaksatter is measured over 50 � 50 km ells over the oean and the totalnumber of observations aquired on a given orbit an be several thousand.
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2 Lehel Csat�o, Dan Cornford, and Manfred OpperIn this paper we show that we an produe an eÆient approximation to theposterior distribution of the wind �eld by applying a Bayesian online learningapproah [Opper 1998℄ to Gaussian proess models following [Csat�o and Opper2001℄, whih omputes the approximate posterior by a single sweep through thedata. The omputational omplexity is further redued by onstruting a sparsesequential approximate representation to the posterior proess.2 Proessing Satterometer DataSatterometers are ommonly used to retrieve wind vetors over oean surfaes.Current methods of transforming the observed values (satterometer data, de-noted as vetor sss or sssi at a given spatial loation) into wind �elds an be splitinto two phases: loal wind vetor retrieval and ambiguity removal [Sto�elenand Anderson 1997a℄ where one of the loal solutions is seleted as the truewind vetor. Ambiguity removal often uses external information, suh as a Nu-merial Weather Predition (NWP) foreast of the expeted wind �eld at thetime of the satterometer observations. We are seeking a method of wind �eldretrieval whih does not require external data.In this paper we use a mixture density network (MDN) [Bishop 1995℄ tomodel the onditional dependene of the loal wind vetor zzzi = (ui; vi) on theloal satterometer observations sssi:pm(zzzijsssi;!!!) = 4Xj=1 �ij�(zzzijij; �ij) (1)where !!! is used to denote the parameters of the MDN, � is a Gaussian distri-bution with parameters funtions of !!! and sssi. The parameters of the MDN aredetermined using an independent training set [Evans et al. 2000℄ and are onsid-ered known in this appliation. The MDN whih has four Gaussian omponentdensities aptures the ambiguity of the inverse problem.In order to have a global model from the loalised wind vetors, we have toombine them. We use a zero-mean vetor GP to link the loal inverse mod-els [Nabney et al. 2000℄:q(zzz) /  NYi pm(zzzijsssi;!!!)p(sssi)pG(zzzijWWW0i) !p0(zzzjWWW0) (2)where zzz = [zzz1; : : : ; zzzN℄T is the onatenation of the loal wind �eld omponents,WWW0 = fWWW0(xi; xj)gij=1;:::;N is the prior ovariane matrix for the vetor zzz (de-pendent on the spatial loation of the wind vetors), and pG is p0 marginalisedat zi, a zero-mean Gaussian with ovarianeWWW0i. The hoie of the kernel fun-tion WWW0(x; y) fully spei�es our prior beliefs about the model. Notie also thatfor any given loation we have a two-dimensional wind vetor, thus the output ofthe kernel funtion is a 2�2 matrix, details an be found in [Nabney et al. 2000℄.The link between two di�erent wind �eld diretions is made through the kernel



Online Wind-Field Approximation 3funtion { the larger the kernel value, the stronger the \oupling" between thetwo orresponding wind �elds is. The prior Gaussian proess is tuned arefullyto represent features seen in real wind �elds.Sine all quantities involved are Gaussians, we ould, in priniple, omputethe resulting probabilities analytially, but this omputation is pratially in-tratable: the number of mixture elements from q(zzz) is 4N, extremely high evenfor moderate values of N. Instead, we will apply the online approximation of[Csat�o and Opper 2001℄ to have a jointly Gaussian approximation to the poste-rior at all data points. However, we know that the posterior distribution of thewind �eld given the satterometer observations is multi-modal, with in generaltwo dominating and well separated modes. We might thus expet that the onlineimplementation of the Gaussian proess will trak one of these posterior modes.Results show that this is indeed the ase, although the order of the insertion ofthe loal observations appears to be important.3 Online learning for the vetor Gaussian ProessGaussian proesses belong to the family of Bayesian [Bernardo and Smith 1994℄models. However, ontrary to the �nite-dimensional ase, here the \model pa-rameters" are ontinuous: the GP priors speify a Gaussian distribution over afuntion spae. Due to the vetor GP, the kernel funtion WWW0(x; y) is a 2 � 2matrix, speifying the pairwise ross-orrelation between wind �eld omponentsat di�erent spatial positions.Simple moments of GP posteriors (whih are usually non Gaussian) have aparametrisation in terms of the training data [Opper and Winther 1999℄ whihresembles the popular kernel-representation [Kimeldorf and Wahba 1971℄. Forall spatial loations x the mean and ovariane funtion of the vetors zzzx 2 R2are represented ashzzzxi =XNi=1WWW0(x; xi) ����zzz(i)ov(zzzx; zzzy) =WWW0(x; y) +XNi;j=1WWW0(x; xi) �CCCzzz(ij) �WWW0(xj; y) (3)where ���zzz(1);���zzz(2); : : : ;���zzz(N) and fCCCzzz(ij)gi;j=1;N are parameters whih will beupdated sequentially by our online algorithm. Before doing so, we will (for nu-merial onveniene) represent the vetorial proess by a salar proess withtwie the number of observations, i.e. we sethzzzxi = 24hfxu)ihfxvi 35 and WWW0(x; y) = 24K0(xu; yu) K0(xu; yv)K0(xv; yu) K0(xv; yv)35 (4)and write (ignoring the supersripts)hfxi =X 2Ni=1K0(x; xi)�(i)ov(fx; fy) = K0(x; y) +X 2Ni;j=1K0(x; xi)C(ij)K0(xj; y) (5)
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2NFig. 1. Illustration of the elements used in the update eq. (6).where ��� = [�1; : : : ; �2N℄T and CCC = fC(ij)gi;j=1;:::;2N are rearrangements of theparameters from eq. (3).The online approximation for GP learning [Csat�o and Opper 2001℄ approxi-mates the posterior by a Gaussian at every step. For a new observation ssst+1, theprevious approximation to the posterior qt(zzz) together with a loal "likelihood"fator (from eq. (2)) pm(zzzt+1jssst+1;!!!)p(ssst+1)pG(zzzt+1jWWW0;t+1)are ombined into a new posterior using Bayes rule. Computing its mean andovariane enable us to reate an updated Gaussian approximation qt+1(zzz) atthe next step. q̂(zzz) = qN+1(zzz) is the �nal result of the online approximation.This proess an be formulated in terms of updates for the parameters ��� and CCCwhih determine the mean and ovariane:���t+1 = ���t + vvvt+1� lng(hzzzt+1i)�hzzzt+1iCCCt+1 = CCCt + vvvt+1�2 lng(hzzzt+1i)�hzzzt+1i2 vvvTt+1with vvvt+1 = CCCtKKK[t+1℄0 + III[t+1℄2 (6)with elements KKK[t+1℄0 and III[t+1℄2 are shown in Fig. 1 andg(hzzzt+1i) = �pm(zzzt+1jssst+1;!!!)p(ssst+1)pG(zzzt+1jWWW0;t+1) �qt(zzzt+1) (7)and hzzzt+1i is a vetor, implying vetor and matrix quantities in (6). Funtiong(hzzzt+1i) is easy to ompute analytially beause it just requires the two dimen-sional marginal distribution of the proess at the observation point ssst+1. Fig. 2shows the results of the online algorithm applied on a sample wind �eld, detailsan be found in the �gure aption.3.1 Obtaining sparsity in Wind FieldsEah time-step the number of nonzero parameters will be inreased in the updateequation. This fores us to use a further approximation whih redues the numberof supporting examples in the representations eq. (5) to a smaller set of basis
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() (d)Fig. 2. The NWP wind �eld estimation (a), the most frequent (b) and the seond mostfrequent () online solution together with a bad solution. The assessment of good/badsolution is based on the value of the relative weight from Setion 3.2. The gray-salebakground indiates the model on�dene (Bayesian error-bars) in the predition,darker shade meaning more on�dene.vetors. Following our approah in [Csat�o and Opper 2001℄ we remove thelast data element when a ertain sore (de�ned by the feature spae geometryassoiated to the kernel KKK0) suggests that the approximation error is small. Theremaining parameters are readjusted to partly ompensate for the removal as:�̂�� = ���(t) -QQQ�qqq�(-1)����Q̂QQ =QQQ(t) -QQQ�qqq�(-1)QQQ�TĈCC = CCC(t) +QQQ�qqq�(-1)�qqq�(-1)QQQ�T -QQQ�qqq�(-1)CCC�T -CCC�qqq�(-1)QQQ�T (8)where QQQ-1 = fK0(xi; xj)gij=1;:::;2N is the inverse of the Gram matrix, the ele-ments being shown in Fig. 3 (����, qqq� and CCC� are two-by-two matries).The presented update is optimal in the sense that the posterior means ofthe proess at data loations are not a�eted by the approximation [Csat�o and
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α*Fig. 3. Deomposition of model parameters for the update equation (8).Opper 2001℄. The hange of the mean at the loation to be deleted is used as asore whih measures the loss. This hange is (again, very similar to the resultsfrom [Csat�o and Opper 2001℄) measured using the sore " = k(qqq�)-1����k (theparameters of the vetor GP an have any order, we an ompute the sore forevery spatial loation).Removing the data loations with low sore sequentially leaves only a smallset of so-alled basis points upon whih all further predition will depend.Our preliminary results are promising: Fig. 4 shows the resulting wind �eldif 85 of the spatial knots are removed from the presentation eq. (5). On theright-hand side the evolution of the KL-divergene and the sum-squared errorsin the means between the vetor GP and a trimmed GP using eq. (8) are shown.as a funtion of the number of deleted points. Whilst the approximation of theposterior variane deays fast, the the preditive mean is fairly reliable againstdeleting.3.2 Measuring the Relative Weight of the ApproximationAn exat omputation of the posterior would lead to a multi-modal distributionof wind �elds at eah data-point. This would orrespond to a mixture of GPs asa posterior rather than to a single GP that is used in our approximation. If theindividual omponents of the mixture are well separated, we may expet that ouronline algorithm will trak modes with signi�ant underlying probability massto give a relevant predition. However, this will depend on the atual sequene ofdata-points that are visited by the algorithm. To investigate the variation of ourwind �eld predition with the data sequene, we have generated many randomsequenes and ompared the outomes based on a simple approximation for therelative mass of the multivariate Gaussian omponent.Assuming an online solution of the marginal distribution (ẑzz; �̂��) at a separatedmode, we have the posterior at the loal maximum expressed:q(ẑzz) / l (2�)-2N=2 j�̂��j-1=2 (9)with q(ẑzz) from eq. (2), l the weight of the omponent of the mixture to whihour online algorithm had onverged, and we assume the loal urvature is alsowell approximated by �̂��.
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(a) (b)Fig. 4. (a) The predited wind �elds when 85% of the modes has been removed (fromFig. 2). The predition is based only on basis vetors (irles). The model on�deneis higher at these regions. (b) The di�erene between the full solution and the approx-imations using the squared di�erene of means (ontinuous line) and the KL-distane(dashed line) respetively.Having two di�erent online solutions (ẑzz1; �̂��1) and (ẑzz1; �̂��1), we �nd from eq (9)that the proportion of the two weights is given by12 = q(ẑzz1)j�̂��1j1=2q(ẑzz2)j�̂��2j1=2 (10)This helps us to estimate, up to an additive onstant, the \relative weight" ofthe wind �eld solutions, helping us to assess the quality of the approximationwe arrived at. Results, using multiple runs on a wind �eld data on�rm thisexpetation, the orret solution (Fig. 2.b) has large value and high frequeny ifdoing multiple runs.4 DisussionIn the wind �eld example the online and sparse approximation allows us to taklemuh larger wind �elds than previously possible. This suggests that we will beable to retrieve wind �elds using only satterometer observations, by utilisingall available information in the signal.Proeeding with the removal of the basis points, it would be desirable tohave an improved update for the vetor GP parameters that leads to a betterestimation of the posterior kernel (thus of the Bayesian error-bars).At present we obtain di�erent solution for di�erent ordering of the data.Future work might seek to build an adaptive lassi�er that works on the familyof online solutions and utilising the relative weights.
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