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h Group, Aston UniversityB4 7ET Birmingham, United Kingdomf
satol,
ornfosd,oppermg�aston.a
.ukAbstra
t. We study online approximations to Gaussian pro
ess modelsfor spatially distributed systems. We apply our method to the predi
tionof wind �elds over the o
ean surfa
e from s
atterometer data. Our ap-proa
h 
ombines a sequential update of a Gaussian approximation to theposterior with a sparse representation that allows to treat problems witha large number of observations.1 Introdu
tionA 
ommon s
enario of applying online or sequential learning methods [Saad 1998℄is when the amount of data is too large to be pro
essed by more eÆ
ient o�inemethods or there is no possibility to store the arriving data. In this arti
le we
onsider the area of spatial statisti
s [Cressie 1991℄, where the data is observed atdi�erent spatial lo
ations and the aim is to build a global Bayesian model of thelo
al observations based on a Gaussian Pro
ess prior distribution. Spe
i�
ally,we 
onsider s
atterometer data obtained from the ERS-2 satellite [OÆler 1994℄where the aim is to obtain an estimate of the wind �elds whi
h the s
atterometerindire
tly measured.The s
atterometer measures the radar ba
ks
atter from the o
ean surfa
e ata wavelength of approximately 5 
m. The strength of the returned signal givesan indi
ation of the wind speed and dire
tion, relative to s
atterometer beamdire
tion. As shown in [Sto�elen and Anderson 1997b℄ the measured ba
ks
at-ter behaves as a trun
ated Fourier expansion in relative wind dire
tion. Thuswhile the wind ve
tor to s
atterometer observations map is one-to-one, its in-verse is one-to-many [Evans et al. 2000℄. This makes the retrieval of a wind �eld a
omplex problem with multiple solutions. Nabney et al. [2000℄ have re
ently pro-posed a Bayesian framework for wind �eld retrieval 
ombining a ve
tor Gaussianpro
ess prior model with lo
al forward (wind �eld to s
atterometer) or inversemodels.One problem with the approa
h outlined in [Nabney et al. 2000℄ is that theve
tor Gaussian pro
ess requires a matrix inversion whi
h s
ales as n3. Theba
ks
atter is measured over 50 � 50 km 
ells over the o
ean and the totalnumber of observations a
quired on a given orbit 
an be several thousand.
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2 Lehel Csat�o, Dan Cornford, and Manfred OpperIn this paper we show that we 
an produ
e an eÆ
ient approximation to theposterior distribution of the wind �eld by applying a Bayesian online learningapproa
h [Opper 1998℄ to Gaussian pro
ess models following [Csat�o and Opper2001℄, whi
h 
omputes the approximate posterior by a single sweep through thedata. The 
omputational 
omplexity is further redu
ed by 
onstru
ting a sparsesequential approximate representation to the posterior pro
ess.2 Pro
essing S
atterometer DataS
atterometers are 
ommonly used to retrieve wind ve
tors over o
ean surfa
es.Current methods of transforming the observed values (s
atterometer data, de-noted as ve
tor sss or sssi at a given spatial lo
ation) into wind �elds 
an be splitinto two phases: lo
al wind ve
tor retrieval and ambiguity removal [Sto�elenand Anderson 1997a℄ where one of the lo
al solutions is sele
ted as the truewind ve
tor. Ambiguity removal often uses external information, su
h as a Nu-meri
al Weather Predi
tion (NWP) fore
ast of the expe
ted wind �eld at thetime of the s
atterometer observations. We are seeking a method of wind �eldretrieval whi
h does not require external data.In this paper we use a mixture density network (MDN) [Bishop 1995℄ tomodel the 
onditional dependen
e of the lo
al wind ve
tor zzzi = (ui; vi) on thelo
al s
atterometer observations sssi:pm(zzzijsssi;!!!) = 4Xj=1 �ij�(zzzij


ij; �ij) (1)where !!! is used to denote the parameters of the MDN, � is a Gaussian distri-bution with parameters fun
tions of !!! and sssi. The parameters of the MDN aredetermined using an independent training set [Evans et al. 2000℄ and are 
onsid-ered known in this appli
ation. The MDN whi
h has four Gaussian 
omponentdensities 
aptures the ambiguity of the inverse problem.In order to have a global model from the lo
alised wind ve
tors, we have to
ombine them. We use a zero-mean ve
tor GP to link the lo
al inverse mod-els [Nabney et al. 2000℄:q(zzz) /  NYi pm(zzzijsssi;!!!)p(sssi)pG(zzzijWWW0i) !p0(zzzjWWW0) (2)where zzz = [zzz1; : : : ; zzzN℄T is the 
on
atenation of the lo
al wind �eld 
omponents,WWW0 = fWWW0(xi; xj)gij=1;:::;N is the prior 
ovarian
e matrix for the ve
tor zzz (de-pendent on the spatial lo
ation of the wind ve
tors), and pG is p0 marginalisedat zi, a zero-mean Gaussian with 
ovarian
eWWW0i. The 
hoi
e of the kernel fun
-tion WWW0(x; y) fully spe
i�es our prior beliefs about the model. Noti
e also thatfor any given lo
ation we have a two-dimensional wind ve
tor, thus the output ofthe kernel fun
tion is a 2�2 matrix, details 
an be found in [Nabney et al. 2000℄.The link between two di�erent wind �eld dire
tions is made through the kernel



Online Wind-Field Approximation 3fun
tion { the larger the kernel value, the stronger the \
oupling" between thetwo 
orresponding wind �elds is. The prior Gaussian pro
ess is tuned 
arefullyto represent features seen in real wind �elds.Sin
e all quantities involved are Gaussians, we 
ould, in prin
iple, 
omputethe resulting probabilities analyti
ally, but this 
omputation is pra
ti
ally in-tra
table: the number of mixture elements from q(zzz) is 4N, extremely high evenfor moderate values of N. Instead, we will apply the online approximation of[Csat�o and Opper 2001℄ to have a jointly Gaussian approximation to the poste-rior at all data points. However, we know that the posterior distribution of thewind �eld given the s
atterometer observations is multi-modal, with in generaltwo dominating and well separated modes. We might thus expe
t that the onlineimplementation of the Gaussian pro
ess will tra
k one of these posterior modes.Results show that this is indeed the 
ase, although the order of the insertion ofthe lo
al observations appears to be important.3 Online learning for the ve
tor Gaussian Pro
essGaussian pro
esses belong to the family of Bayesian [Bernardo and Smith 1994℄models. However, 
ontrary to the �nite-dimensional 
ase, here the \model pa-rameters" are 
ontinuous: the GP priors spe
ify a Gaussian distribution over afun
tion spa
e. Due to the ve
tor GP, the kernel fun
tion WWW0(x; y) is a 2 � 2matrix, spe
ifying the pairwise 
ross-
orrelation between wind �eld 
omponentsat di�erent spatial positions.Simple moments of GP posteriors (whi
h are usually non Gaussian) have aparametrisation in terms of the training data [Opper and Winther 1999℄ whi
hresembles the popular kernel-representation [Kimeldorf and Wahba 1971℄. Forall spatial lo
ations x the mean and 
ovarian
e fun
tion of the ve
tors zzzx 2 R2are represented ashzzzxi =XNi=1WWW0(x; xi) ����zzz(i)
ov(zzzx; zzzy) =WWW0(x; y) +XNi;j=1WWW0(x; xi) �CCCzzz(ij) �WWW0(xj; y) (3)where ���zzz(1);���zzz(2); : : : ;���zzz(N) and fCCCzzz(ij)gi;j=1;N are parameters whi
h will beupdated sequentially by our online algorithm. Before doing so, we will (for nu-meri
al 
onvenien
e) represent the ve
torial pro
ess by a s
alar pro
ess withtwi
e the number of observations, i.e. we sethzzzxi = 24hfxu)ihfxvi 35 and WWW0(x; y) = 24K0(xu; yu) K0(xu; yv)K0(xv; yu) K0(xv; yv)35 (4)and write (ignoring the supers
ripts)hfxi =X 2Ni=1K0(x; xi)�(i)
ov(fx; fy) = K0(x; y) +X 2Ni;j=1K0(x; xi)C(ij)K0(xj; y) (5)
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2NFig. 1. Illustration of the elements used in the update eq. (6).where ��� = [�1; : : : ; �2N℄T and CCC = fC(ij)gi;j=1;:::;2N are rearrangements of theparameters from eq. (3).The online approximation for GP learning [Csat�o and Opper 2001℄ approxi-mates the posterior by a Gaussian at every step. For a new observation ssst+1, theprevious approximation to the posterior qt(zzz) together with a lo
al "likelihood"fa
tor (from eq. (2)) pm(zzzt+1jssst+1;!!!)p(ssst+1)pG(zzzt+1jWWW0;t+1)are 
ombined into a new posterior using Bayes rule. Computing its mean and
ovarian
e enable us to 
reate an updated Gaussian approximation qt+1(zzz) atthe next step. q̂(zzz) = qN+1(zzz) is the �nal result of the online approximation.This pro
ess 
an be formulated in terms of updates for the parameters ��� and CCCwhi
h determine the mean and 
ovarian
e:���t+1 = ���t + vvvt+1� lng(hzzzt+1i)�hzzzt+1iCCCt+1 = CCCt + vvvt+1�2 lng(hzzzt+1i)�hzzzt+1i2 vvvTt+1with vvvt+1 = CCCtKKK[t+1℄0 + III[t+1℄2 (6)with elements KKK[t+1℄0 and III[t+1℄2 are shown in Fig. 1 andg(hzzzt+1i) = �pm(zzzt+1jssst+1;!!!)p(ssst+1)pG(zzzt+1jWWW0;t+1) �qt(zzzt+1) (7)and hzzzt+1i is a ve
tor, implying ve
tor and matrix quantities in (6). Fun
tiong(hzzzt+1i) is easy to 
ompute analyti
ally be
ause it just requires the two dimen-sional marginal distribution of the pro
ess at the observation point ssst+1. Fig. 2shows the results of the online algorithm applied on a sample wind �eld, details
an be found in the �gure 
aption.3.1 Obtaining sparsity in Wind FieldsEa
h time-step the number of nonzero parameters will be in
reased in the updateequation. This for
es us to use a further approximation whi
h redu
es the numberof supporting examples in the representations eq. (5) to a smaller set of basis



Online Wind-Field Approximation 5
NWP Prediction Most frequent online result

(a) (b)
Symmetric solution Bad solution

(
) (d)Fig. 2. The NWP wind �eld estimation (a), the most frequent (b) and the se
ond mostfrequent (
) online solution together with a bad solution. The assessment of good/badsolution is based on the value of the relative weight from Se
tion 3.2. The gray-s
aleba
kground indi
ates the model 
on�den
e (Bayesian error-bars) in the predi
tion,darker shade meaning more 
on�den
e.ve
tors. Following our approa
h in [Csat�o and Opper 2001℄ we remove thelast data element when a 
ertain s
ore (de�ned by the feature spa
e geometryasso
iated to the kernel KKK0) suggests that the approximation error is small. Theremaining parameters are readjusted to partly 
ompensate for the removal as:�̂�� = ���(t) -QQQ�qqq�(-1)����Q̂QQ =QQQ(t) -QQQ�qqq�(-1)QQQ�TĈCC = CCC(t) +QQQ�qqq�(-1)


�qqq�(-1)QQQ�T -QQQ�qqq�(-1)CCC�T -CCC�qqq�(-1)QQQ�T (8)where QQQ-1 = fK0(xi; xj)gij=1;:::;2N is the inverse of the Gram matrix, the ele-ments being shown in Fig. 3 (����, qqq� and CCC� are two-by-two matri
es).The presented update is optimal in the sense that the posterior means ofthe pro
ess at data lo
ations are not a�e
ted by the approximation [Csat�o and
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omposition of model parameters for the update equation (8).Opper 2001℄. The 
hange of the mean at the lo
ation to be deleted is used as as
ore whi
h measures the loss. This 
hange is (again, very similar to the resultsfrom [Csat�o and Opper 2001℄) measured using the s
ore " = k(qqq�)-1����k (theparameters of the ve
tor GP 
an have any order, we 
an 
ompute the s
ore forevery spatial lo
ation).Removing the data lo
ations with low s
ore sequentially leaves only a smallset of so-
alled basis points upon whi
h all further predi
tion will depend.Our preliminary results are promising: Fig. 4 shows the resulting wind �eldif 85 of the spatial knots are removed from the presentation eq. (5). On theright-hand side the evolution of the KL-divergen
e and the sum-squared errorsin the means between the ve
tor GP and a trimmed GP using eq. (8) are shown.as a fun
tion of the number of deleted points. Whilst the approximation of theposterior varian
e de
ays fast, the the predi
tive mean is fairly reliable againstdeleting.3.2 Measuring the Relative Weight of the ApproximationAn exa
t 
omputation of the posterior would lead to a multi-modal distributionof wind �elds at ea
h data-point. This would 
orrespond to a mixture of GPs asa posterior rather than to a single GP that is used in our approximation. If theindividual 
omponents of the mixture are well separated, we may expe
t that ouronline algorithm will tra
k modes with signi�
ant underlying probability massto give a relevant predi
tion. However, this will depend on the a
tual sequen
e ofdata-points that are visited by the algorithm. To investigate the variation of ourwind �eld predi
tion with the data sequen
e, we have generated many randomsequen
es and 
ompared the out
omes based on a simple approximation for therelative mass of the multivariate Gaussian 
omponent.Assuming an online solution of the marginal distribution (ẑzz; �̂��) at a separatedmode, we have the posterior at the lo
al maximum expressed:q(ẑzz) / 
l (2�)-2N=2 j�̂��j-1=2 (9)with q(ẑzz) from eq. (2), 
l the weight of the 
omponent of the mixture to whi
hour online algorithm had 
onverged, and we assume the lo
al 
urvature is alsowell approximated by �̂��.
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(a) (b)Fig. 4. (a) The predi
ted wind �elds when 85% of the modes has been removed (fromFig. 2). The predi
tion is based only on basis ve
tors (
ir
les). The model 
on�den
eis higher at these regions. (b) The di�eren
e between the full solution and the approx-imations using the squared di�eren
e of means (
ontinuous line) and the KL-distan
e(dashed line) respe
tively.Having two di�erent online solutions (ẑzz1; �̂��1) and (ẑzz1; �̂��1), we �nd from eq (9)that the proportion of the two weights is given by
1
2 = q(ẑzz1)j�̂��1j1=2q(ẑzz2)j�̂��2j1=2 (10)This helps us to estimate, up to an additive 
onstant, the \relative weight" ofthe wind �eld solutions, helping us to assess the quality of the approximationwe arrived at. Results, using multiple runs on a wind �eld data 
on�rm thisexpe
tation, the 
orre
t solution (Fig. 2.b) has large value and high frequen
y ifdoing multiple runs.4 Dis
ussionIn the wind �eld example the online and sparse approximation allows us to ta
klemu
h larger wind �elds than previously possible. This suggests that we will beable to retrieve wind �elds using only s
atterometer observations, by utilisingall available information in the signal.Pro
eeding with the removal of the basis points, it would be desirable tohave an improved update for the ve
tor GP parameters that leads to a betterestimation of the posterior kernel (thus of the Bayesian error-bars).At present we obtain di�erent solution for di�erent ordering of the data.Future work might seek to build an adaptive 
lassi�er that works on the familyof online solutions and utilising the relative weights.



However, a more desirable method would be to extend our online approa
hto mixtures of GPs in order to in
orporate the multi-modality of the posteriorpro
ess in a prin
ipled way.5 A
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