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AbstractGaussian Processes provide good prior models for spatial data, but can be too smooth. In manyphysical situations there are discontinuities along bounding surfaces, for example fronts in near-surface wind �elds. We describe a modelling method for such a constrained discontinuity anddemonstrate how to infer the model parameters in wind �elds with MCMC sampling.
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2 Adding Constrained Discontinuities to Gaussian Process Models of Wind Fields1 INTRODUCTIONWe introduce a model for wind �elds based on Gaussian Processes (GPs) with `constrained dis-continuities'. GPs provide a 
exible framework for modelling various systems. They have beenadopted in the neural network community and are interpreted as placing priors over functions.Stationary vector-valued GP models (Daley, 1991) can produce realistic wind �elds when run asa generative model; however, the resulting wind �elds do not contain some features typical of theatmosphere. The most di�cult features to include are surface fronts. Fronts are generated bycomplex atmospheric dynamics and are marked by large changes in the surface wind direction (seefor example Figures 2a and 3a) and temperature. In order to account for such features, which ap-pear discontinuous at our observation scale, we have developed a model for vector-valued GPs withconstrained discontinuities which could also be applied in domains such as surface reconstructionin computer vision, and geostatistics.In section 2 we illustrate the generative model for wind �elds with fronts. Section 3 explains whatwe mean by GPs with constrained discontinuities and derives the likelihood of data under themodel. Results of Bayesian estimation of the model parameters are given, using a Markov ChainMonte Carlo (MCMC) procedure. In the �nal section, the strengths and weaknesses of the modelare discussed and improvements suggested.2 A GENERATIVE WIND FIELD MODELWe are primarily interested in retrieving wind �elds from satellite scatterometer observations of theocean surface1. A probabilistic prior model for wind �elds will be used in a Bayesian procedureto resolve ambiguities in local predictions of wind direction. The generative model for a wind�eld including a front is taken to be a combination of two vector-valued GPs with a constraineddiscontinuity.A common method for representing wind �elds is to put GP priors over the velocity potential �and stream function 	 of the wind �eld (Daley, 1991). The horizontal wind vector u = (u; v) canthen be derived from: u = �@	@y + @�@x ; v = @	@x + @�@y : (1)This produces good prior models for wind �elds when a suitable choice of covariance functionfor � and 	 is made. We have investigated using a modi�ed Bessel function based covariance2(Handcock and Wallis, 1994) but found, using three years of wind data for the North Atlantic,that the maximum a posteriori probability value for the smoothness parameter3 in this covariancefunction was � 2:5. Thus we used the correlation function:�(r) = �1 + rL + r23L2� exp�� rL� (2)where L is the correlation length scale, which is equivalent and less computationally demanding(Cornford, 1998).The generative model has the form outlined in Figure 1a. Initially the frontal position and ori-entation is simulated. This is given by an angle clockwise from north (�f ) that the front makesand a point on the line (xf ; yf ). The present model generates straight fronts. Having de�ned the1See http://www.ncrg.aston.ac.uk/Projects/NEUROSAT/NEUROSAT.html for details of the scatterometer work.Technical reports describing in more detail methods for generating prior wind �eld models can also be accessed fromthe same page.2The modi�ed Bessel function allows us to control the di�erentiability of the sample realisations through the`smoothness parameter', as well as the length scales and variances.3This varies with season, but is the most temporally stable parameter in the covariance function.
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Simulate Frontal Position, Orientation and Direction

Simulate Frontal Wind Angle

Simulate Wind Speed at Front

Simulate Along Both Sides of Front using GP1

Simulate Wind Fields Either Side of Front Conditionally
on that Sides Frontal Winds using GP2(a) Φf
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+ (b)Figure 1: (a) Flowchart describing the generative frontal model. See text for full description.(b) A description of the frontal model.position of the front, the angle of the wind across the front (�f ) is simulated from a distributioncovering the range [0; �). This angle is related to the vertical component of vorticity (�) across thefront through � = k � r�u / cos ��f2 � and the constraint �f 2 [0; �) ensures cyclonic vorticity atthe front. It is assumed that the front bisects �f . The wind speed (sf ) is then simulated at thefront. Since there is generally little change in wind speed across the front one value is simulatedfor both sides of the front. These components �f = (�f ; xf ; yf ; �f ; sf ) de�ne the line of the frontand the mean wind vectors just ahead of and just behind:m1a = (um1a; vm1a) = �sf sin��f + �f2 � ; sf cos��f + �f2 �� (3)m1b = (um1b; vm1b) = ��sf sin��f � �f2 � ;�sf cos��f � �f2 �� (4)the front (Figure 1b).A realistic model requires some variability in wind vectors along the front. Thus we use a GPwith a non-zero mean (m1a or m1b) along the line of the front. In the real atmosphere we observea smaller variability in the wind vectors along the line of the front compared with regions awayfrom fronts. Thus we use a di�erent GP along the front (GP1), from that used in the wind �eldaway from the front (GP2), although the same GP1 parameters are used both sides of the front,just with di�erent means. The winds just ahead of and behind the front are assumed conditionallyindependent given m1a and m1b, and are simulated at a regular 50 km spacing. The �nal step inthe generative model is to simulate wind vectors using GP2 in both regions either side of the front,conditionally on the values along that side of the front. This model is 
exible enough to representfronts, yet has the required constraints derived from meteorological principles, for example thatfronts should always be associated with cyclonic vorticity with discontinuities at the model scalein wind direction but not in wind speed4. To make this generative model useful, we need to beable to compute the data likelihood, which is the subject of the next section.3 GPs WITH CONSTRAINED DISCONTINUITIESWe consider data from two domains D1 and D2 (Figure 2b), where in this case D1 is a curve in theplane which is intended to be the front and D2 is a region of the plane. We obtain n1 variables Z1at points x1 along the curve, and we assume these are generated under GP1 (a GP which dependson parameters �1 and has mean m1 = m11 which will be determined by (3) or (4)). We areinterested in determining the likelihood of the variables Z2 observed at n2 points x2 under GP2which depends on parameters �2, conditionally on the `constrained discontinuities' at the front.4The model allows small discontinuities in wind speed, which are consistent with frontal dynamics.
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(b)Figure 2: (a) The discontinuity in one of the vector components in a simulation. (b) Frameworkfor GPs with boundary conditions. The curve D1 has n1 sample points with valuesZ1. The domain D2 has n2 points with values Z2.We evaluate this by calculating the likelihood of Z2 conditionally on the n1 values of Z1 from GP1along the front and marginalising out Z1:P (Z2j�2;�1) = Z 1�1 P (Z2jZ1;�2;�1;m1)P (Z1j�1;m1)dZ1: (5)From the de�nition of the likelihood of a GP (Cressie, 1993) we �nd:P (Z2jZ1;�2;�1;m1) = 1(2�)n22 jS22j 12 exp��12Z�2 0S�122 Z�2� (6)where: S22 = K22j2 �K 012j2K�111j2K12j2; Z�2 = Z2 �K 012j2K�111j2Z1:To understand the notation consider the joint distribution of Z1;Z2 and in particular its covariancematrix (assuming that both random �elds are generated under GP2):K = �K11j2 K12j2K21j2 K22j2� (7)where K11j2 is taken to mean the n1 � n1 covariance matrix between the points in D1 evaluatedunder the covariance for GP2, K12j2 = K 021j2 the n1 � n2 (cross) covariance matrix between thepoints in D1 and D2 evaluated using �2 and K22j2 is the usual n2 � n2 covariance for points inD2. Thus we can see that S22 is the n2 � n2 modi�ed covariance for the points in D2 given thepoints along D1, while the Z�2 is the corrected mean that accounts for the values at the points inD1, which have non-zero mean.We remove the dependency on the values Z1 by evaluating the integral in (5). P (Z1j�1;m1) isgiven by: P (Z1j�1;m1) = 1(2�)n12 jK11j1j 12 exp��12 (Z1 �m1)0K�111j1 (Z1 �m1)� (8)where K11j1 is the n1�n1 covariance matrix between the points in D1 evaluated under the covari-ance given by �1. Completing the square in Z1 in the exponent, the integral (5) can be evaluatedto give: P (Z2j�2;�1;m1) = 1(2�)n22 1jS22j 12 1jK11j1j 12 1jBj 12 � (9)exp�12 �C 0B�1C �Z20S�122 Z2 �m10K�111j1m1��



Adding Constrained Discontinuities to Gaussian Process Models of Wind Fields 5where: B = (K 012j2K�111j2)0S�122 K 012j2K�111j2 +K�111j1C 0 = Z20S�122 K 012j2K�111j2 +m10K�111j1The algorithm has been coded in Matlab and can deal with reasonably large numbers of pointsquickly. With n1 = 12 and n2 = 200 for a two dimensional vector-valued GP5 based on a covariancefunction given by (2) computation of the log likelihood takes 4.13 seconds on an SGI Indy R5000.3.1 ESTIMATING POSTERIOR PROBABILITIES OF MODEL PA-RAMETERSThe mean value just ahead and behind the front de�ne the mean values for the constrained discon-tinuity (i.e. m1 in (9)). Conditional on the frontal parameters the wind �elds either side (Figure3a) are assumed independent:P (Z2a;Z2bj�2;�1;�f ) = P (Z2aj�2;�1;m1a)P (m1aj�f )�P (Z2bj�2;�1;m1b)P (m1bj�f )where we have performed the integration (5) to remove the dependency on Z1a and Z1b. Thusthe likelihood of the data Z2 = (Z2a;Z2b) given the model parameters �2;�1;�f is simply theproduct of the likelihoods of two GPs with a constrained discontinuity which can be computedusing (9).
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(b)Figure 3: (a) The division of the wind �eld using the generative frontal model. Z1a, Z1b arethe wind �elds just ahead and behind the front, along its length, respectively. Z2a,Z2b are the wind �elds in the regions ahead of and behind the front respectively.(b) An example from the generative frontal model: the wind �eld used to test thelikelihood computations which looks like a typical `cold front'.The model outlined above is tested on simulated data generated from the model to assess modelsensitivity. We generate a wind �eld Zo = (Zo2a;Zo2b) using known model parameters (e.g. Fig-ure 3b). We then investigate the sampling of model parameters from the posterior distribution:P (�2;�1;�f jZo) / P (Zoj�2;�1;�f )P (�2)P (�1)P (�f ) (10)where P (�2); P (�1); P (�f ) are prior distributions over the parameters in the GPs and front models.This brings out one advantage of the proposed model. All the model parameters have a physicalinterpretation and thus expert knowledge was used to set priors which produce realistic wind �elds.We will also use (10) to help set (hyper)priors using real data in Zo.MCMC using the Metropolis algorithm (Neal, 1993) is used to sample from (10) using the Netlab6library forMatlab. Convergence of the Markov chain is currently assessed using visual inspection5This is equivalent to n1 = 24 and n2 = 400 for a scalar GP.6Available from http://www.ncrg.aston.ac.uk/netlab/index.html.
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Sample number(b)Figure 4: Examples from the Markov chain of the posterior distribution (10): (a) the energy =negative log posterior probability. Note that the energy when the chain was initialisedwas 2789 and the �rst 27 values are outside the range of the y-axis, (b) the angle ofthe front relative to north (�f ).of the univariate sample paths since the generating parameters are known, although other diag-nostics could be used (Cowles and Carlin, 1996). We �nd that the procedure is insensitive to theinitial value of the GP parameters, but that the parameters describing the location of the front(�f ; df ) need to be initialised `close' to the correct values if the chain is to be run for sensible times.In application some preliminary analysis of the wind �eld would be necessary to identify possiblefronts and thus set the initial parameters to `sensible' values. We intend to �t a vector-valued GPwithout any discontinuities and then measure the `strain' or mis�t of the observed winds with the�tted winds. Lines of large `strain' will be used to initialise the front parameters.
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(b)Figure 5: Examples from the Markov chain of the posterior distribution (10): (a) the angleof the wind across the front (�f ), (b) histogram of the posterior distribution of �fallowing a 10000 iteration burn-in period.Examples of samples from the Markov chain from the simulated wind �eld shown in Figure 3acan be seen in Figures 4 and 5. Figure 4a shows that the energy level (= negative log posteriorprobability) falls very rapidly to near its minimum value from its large starting value of 2789. Inthese plots the true parameters for the front were �f = 0:555, �f = 2:125 while the initial valueswere set at �f = 0:89, �f = 1:49. Other parameters were also incorrectly set. The Metropolisalgorithm seems to be able to �nd the minimum and then stays in it.Figure 4b and 5a show the Markov chains for �f and �f . Both converge quickly to an apparentlystationary distributions, which have mean values very close to the `true' generating parameters.The histogram of the distribution of �f is shown in Figure 5b.



Adding Constrained Discontinuities to Gaussian Process Models of Wind Fields 74 DISCUSSION AND CONCLUSIONSOur model has been shown to produce a plausible model for wind �elds which contain fronts. Itis possible similar models could usefully be applied to other modelling problems where there arediscontinuities with known properties. A method for the computation of the likelihood of datagiven two GP models, one with non-zero mean on the boundary and another in the domain inwhich the data is observed, has been given. This allows us to perform inference on the parametersin the frontal model using a Bayesian approach of sampling from the posterior distribution usinga MCMC algorithm.There are several weaknesses in the model, which could be improved with further work. Realatmospheric fronts are not straight, thus the model would be improved by allowing `curved' fronts.We could represent the position of the front, oriented along the angle de�ned by �f using eitheranother smooth GP, B-splines or possibly polynomials.Currently the points along the line of the front are simulated at the mean observation spacing inthe rest of the wind �eld (� 50 km). Interesting questions remain about the (in-�ll) asymptotics(Cressie, 1993) as the distance between the points along the front tends to zero. Empirical evidencesuggests that as long as the spacing along the front is `much less' than the length scale of the GPalong the front (which is typically � 1000 km) then the spacing does not signi�cantly a�ect theresults.Although we currently use a Metropolis algorithm for sampling from the Markov chain, the deriva-tive of (9) with respect to the GP parameters �1 and �2 could be computed analytically and usedin a hybrid Monte Carlo procedure (Neal, 1993).These improvements should lead to a relatively robust procedure for putting priors over wind �eldswhich will be used with real data when retrieving wind vectors from scatterometer observationsover the ocean.AcknowledgementsThis work was partially supported by the European Union funded NEUROSAT programme (grantnumber ENV4 CT96-0314) and also EPSRC grant GR/L03088 Combining Spatially DistributedPredictions from Neural Networks.ReferencesCornford, D. 1998. Flexible Gaussian Process Wind Field Models. Technical ReportNCRG/98/017, Neural Computing Research Group, Aston University, Aston Triangle, Birm-ingham, UK.Cowles, M. K. and B. P. Carlin 1996. Markov-Chain Monte-Carlo Convergence Diagnostics|AComparative Review. Journal of the American Statistical Association 91, 883{904.Cressie, N. A. C. 1993. Statistics for Spatial Data. New York: John Wiley and Sons.Daley, R. 1991. Atmospheric Data Analysis. Cambridge: Cambridge University Press.Handcock, M. S. and J. R. Wallis 1994. An Approach to Statistical Spatio-Temporal Modellingof Meteorological Fields. Journal of the American Statistical Association 89, 368{378.Neal, R. M. 1993. Probabilistic Inference Using Markov Chain Monte Carlo Methods. Techni-cal Report CRG-TR-93-1, Department of Computer Science, University of Toronto. URL:http://www.cs.utoronto.ca/�radford.


