38 research outputs found

    Sampling and contaminant monitoring protocol for raptors

    Get PDF
    In May 2013 representatives from six countries gathered in Murcia, Spain, to attend the Workshop on &ldquo;Setting best practices on raptor contaminant monitoring activities in Europe&rdquo; funded by EURAPMON. The workshop developed a rough draft of the current protocol. The protocol was subsequently completed with the involvement of investigators from Belgium, Denmark, France, Germany, The Netherlands, Norway, Spain, Sweden and the United Kingdom. All contributors are experts in monitoring contaminants in raptors. The aim of this sampling protocol is to provide guidance on types of best practice that will facilitate harmonisation of procedures between existing and emerging schemes and so maximise the reliability, comparability and interoperability of data.The methods here do not require use of anaesthesia on birds. This protocol covers the sampling of blood and feathers from live birds, addled and deserted eggs, internal organs and tissues from dead specimens, and other samples such as faeces, preen oil and pellets.</p

    Metal transfer to sediments, invertebrates and fish following waterborne exposure to silver nitrate or silver sulfide nanoparticles in an indoor stream mesocosm.

    Get PDF
    The fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm was explored the fate and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) compared to silver nitrate (AgNO3). The aims were to determine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method. The total Ag in the water column from a nominal daily dose of 10 μg L-1 of Ag for the AgNO3 or Ag2S NP treatments reached a plateau of around 13 and 12 μg L-1, respectively, by the end of the study. Similarly, the sediment of both Ag-treatments reached ~380 μg Ag kg-1, and with most of it being acid-extractable/labile. The biota accumulated 4-59 μg Ag g-1 dw, depending on the type of Ag-treatment and organism. The oligochaete worm, Lumbriculus variegatus, accumulated Ag from the Ag2S exposure over time, which was similar to the AgNO3 treatment by the end of the experiment. The planarian, Girardia tigrina, and the chironomid larva, Chironomus riparius, showed much higher Ag concentrations than the oligochaete worms; and with a clearer time-dependent statistically significant Ag accumulation relative to the untreated controls. For the pulmonated snail, Physa acuta, bioaccumulation of Ag from AgNO3 and Ag2S NP exposures was observed, but was lower from the nano treatment. The AgNO3 exposure caused appreciable Ag accumulation in the water flea, Daphnia magna, but accumulation was higher in the Ag2S NP treatment (reaching 59 μg g-1 dw). In the rainbow trout, Oncorhynchus mykiss, AgNO3, but not Ag2S NPs, caused total Ag concentrations to increase in the tissues. Overall, the study showed transfer of total Ag from the water column to the sediment, and Ag bioaccumulation in the biota, with Ag from Ag2S NP exposure generally being less bioavailable than that from AgNO3

    The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology

    Get PDF
    Despite the diverse structures and functions of the gut barrier in the animal kingdom, some common features of gut lumen chemistry control the behaviour of engineered nanomaterials, and with some potentially novel uptake pathways in invertebrates.</p

    Cost-effectiveness of an exercise program during pregnancy to prevent gestational diabetes: Results of an economic evaluation alongside a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of gestational diabetes mellitus (GDM) is increasing worldwide. GDM and the risks associated with GDM lead to increased health care costs and losses in productivity. The objective of this study is to evaluate whether the FitFor2 exercise program during pregnancy is cost-effective from a societal perspective as compared to standard care.</p> <p>Methods</p> <p>A randomised controlled trial (RCT) and simultaneous economic evaluation of the FitFor2 program were conducted. Pregnant women at risk for GDM were randomised to an exercise program to prevent high maternal blood glucose (n = 62) or to standard care (n = 59). The exercise program consisted of two sessions of aerobic and strengthening exercises per week. Clinical outcome measures were maternal fasting blood glucose levels, insulin sensitivity and infant birth weight. Quality of life was measured using the EuroQol 5-D and quality-adjusted life-years (QALYs) were calculated. Resource utilization and sick leave data were collected by questionnaires. Data were analysed according to the intention-to-treat principle. Missing data were imputed using multiple imputations. Bootstrapping techniques estimated the uncertainty surrounding the cost differences and incremental cost-effectiveness ratios.</p> <p>Results</p> <p>There were no statistically significant differences in any outcome measure. During pregnancy, total health care costs and costs of productivity losses were statistically non-significant (mean difference €1308; 95%CI €-229 - €3204). The cost-effectiveness analyses showed that the exercise program was not cost-effective in comparison to the control group for blood glucose levels, insulin sensitivity, infant birth weight or QALYs.</p> <p>Conclusion</p> <p>The twice-weekly exercise program for pregnant women at risk for GDM evaluated in the present study was not cost-effective compared to standard care. Based on these results, implementation of this exercise program for the prevention of GDM cannot be recommended.</p> <p>Trial registration</p> <p>NTR1139</p

    Responses of seabirds, in particular prions (Pachyptila sp.), to small-scale processes in the Antarctic Polar Front

    Get PDF
    Small-scale distribution patterns of seabirds in the Antarctic Polar Front (APF) were investigated in relation to other biological, physical, and chemical features during the ANT-XIII/2 research cruise of R.V. Polarstern from December 1995 to January 1996. The APF is characterized by steep gradients in sea-surface temperature and salinity. Within the APF, gradient zones were closely associated with elevated levels of primary production, chlorophyll-a (chl-a) concentrations, and zooplankton densities. Even broad-billed prions (‘Pachyptila vittata-group’), which dominated the seabird community by 83% in carbon requirements, showed small-scale distributional patterns that were positively related to primary production, chl-a, and total zooplankton densities. The findings demonstrate a close, direct link between fine-scale physical processes in the APF and biological activity through several food web levels up to that of zooplankton-eating seabirds. Broad-billed prions appeared to forage on very small copepods (Oithona spp.) in close association with the front. Fish- and squid-eating predators showed poor correlations with small-scale spatial structures of the APF. However, in a wider band around the APF, most top predators did occur in elevated densities, showing gradual spatio-temporal diffusion of the impact of the APF on higher trophic levels.<br/

    Resilience in sports: a multidisciplinary, dynamic, and personalized perspective

    No full text
    Athletes are exposed to various psychological and physiological stressors, such as losing matches and high training loads. Understanding and improving the resilience of athletes is therefore crucial to prevent performance decrements and psychological or physical problems. In this review, resilience is conceptualized as a dynamic process of bouncing back to normal functioning following stressors. This process has been of wide interest in psychology, but also in the physiology and sports science literature (e.g. load and recovery). To improve our understanding of the process of resilience, we argue for a collaborative synthesis of knowledge from the domains of psychology, physiology, sports science, and data science. Accordingly, we propose a multidisciplinary, dynamic, and personalized research agenda on resilience. We explain how new technologies and data science applications are important future trends (1) to detect warning signals for resilience losses in (combinations of) psychological and physiological changes, and (2) to provide athletes and their coaches with personalized feedback about athletes' resilience

    Heavy-metal concentrations in small mammals from a diffusely polluted floodplain : importance of species- and location-specific characteristics.

    Get PDF
    The soil of several floodplain areas along large European rivers shows increased levels of heavy metals as a relict from past sedimentation of contaminants. These levels may pose risks of accumulation in food webs and toxicologic effects on flora and fauna. However, for floodplains, data on heavy-metal concentrations in vertebrates are scarce. Moreover, these environments are characterised by periodical flooding cycles influencing ecologic processes and patterns. To investigate whether the suggested differences in accumulation risks for insectivores and carnivores, omnivores, and herbivores are reflected in the actual heavy-metal concentrations in the species, we measured the current levels of Zn, Cu, Pb, and Cd in 199 specimens of 7 small mammal species (voles, mice, and shrews) and in their habitats in a diffusely polluted floodplain. The highest metal concentrations were found in the insectivorous and carnivorous shrew, Sorex araneus. Significant differences between the other shrew species, Crocidura russula, and the vole and mouse species was only found for Cd. The Cu concentration in Clethrionomys glareolus, however, was significantly higher than in several other vole and mouse species. To explain the metal concentrations found in the specimens, we related them to environmental variables at the trapping locations and to certain characteristics of the mammals. Variables taken into account were soil total and CaCl2-extractable metal concentrations at the trapping locations; whether locations were flooded or nonflooded; the trapping season; and the life stage; sex; and fresh weight of the specimens. Correlations between body and soil concentrations and location or specimen characteristics were weak. Therefore; we assumed that exposure of small mammals to heavy-metal contamination in floodplains is significantly influenced by exposure time, which is age related, as well as by dispersal and changes in foraging and feeding patterns under influence of periodic flooding
    corecore