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Abstract

Small-scale distribution patterns of seabirds in the Antarctic Polar Front (APF) were investigated in relation to other

biological, physical, and chemical features during the ANT-XIII/2 research cruise of R.V. Polarstern from December

1995 to January 1996. The APF is characterized by steep gradients in sea-surface temperature and salinity. Within the

APF, gradient zones were closely associated with elevated levels of primary production, chlorophyll-a (chl-a)

concentrations, and zooplankton densities. Even broad-billed prions (‘Pachyptila vittata-group’), which dominated the

seabird community by 83% in carbon requirements, showed small-scale distributional patterns that were positively

related to primary production, chl-a, and total zooplankton densities. The findings demonstrate a close, direct link

between fine-scale physical processes in the APF and biological activity through several food web levels up to that of

zooplankton-eating seabirds. Broad-billed prions appeared to forage on very small copepods (Oithona spp.) in close

association with the front. Fish- and squid-eating predators showed poor correlations with small-scale spatial structures

of the APF. However, in a wider band around the APF, most top predators did occur in elevated densities, showing

gradual spatio-temporal diffusion of the impact of the APF on higher trophic levels. r 2002 Elsevier Science Ltd. All

rights reserved.

1. Introduction

Seabirds live in a patchy, dynamic environment
where prey is unevenly distributed. In their search
for food, seabirds aggregate in certain areas where
prey appears to be more abundant. Bird concen-

trations are often found around oceanic fronts
(Haney and McGillivary, 1985; Heinemann et al.,
1989; Hunt, 1990; Schneider, 1990; Veit et al.,
1993; Pakhomov and McQuaid, 1996) but also in
association with phenomena like sea-ice(-edges) or
icebergs (Ainley et al., 1993; Van Franeker et al.,
1997; Nicol et al., 2000). Frontal zones are often
associated with high levels of biological activity
derived from local production and/or from food
transported to the front by converging water-
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masses (Murhpy, 1995). However, it is only with
limited success that small-scale seabird distribu-
tion has been directly related to processes at
frontal zones (Abrams, 1985a; Ainley et al., 1992;
Haney and McGillivary, 1985; Schneider et al.,
1987; Van Franeker, 1992). For some Antarctic
birds, Heinemann et al. (1989) did find a positive
relation between their distributions and that of
their prey krill Euphausia superba, but the relation-
ship was absent in many other bird species, even in
several specialized krill-predators. The lack of
correlation may be due to differences in temporal
and spatial scales of the occurrence of predators
and prey and stochasticity of the availability of the
prey or the occurrence of birds. It also has been
shown that birds with different feeding ecologies
react differently to frontal areas (Kinder et al.,
1983; Harrison et al., 1990). So, in spite of a
generally accepted pattern of aggregation of sea-
birds near frontal areas on a larger scale, the small-
scale patterns and mechanisms leading to such
aggregations are often unclear.

Here, we report on a top predator study in the
Antarctic Polar Front (APF). During December
1995 and January 1996, the German research
vessel R.V. Polarstern undertook research in the
Southern Ocean near the Greenwich meridian,
travelling between Cape Town and Neumayer base
in the Antarctic (voyage ANT-XIII/2; Bathmann
et al., 1997a). This project was part of the
Southern Ocean component of the Joint Global
Ocean Flux Study (SO-JGOFS) and followed
earlier work in the same area in October–
November 1992 (ANT-X/6; Smetacek et al.,
1997). An important part of the 1995/1996 cruise
was dedicated to resolving features of primary
production and carbon fluxes in the circumpolar
APF. The APF here is characterized by steep but
variable gradients in surface-water temperature
and salinity (Whitworth and Nowlin, 1987; Veth
et al., 1997), and patches of elevated primary
production (Sullivan et al., 1993; De Baar et al.,
1995; Bakker et al., 1997). During systematical
small grid transects in the APF, we monitored
seabird distributions simultaneously with contin-
uous underway measurements of a number of
abiotic and biotic variables. This paper discusses
the spatial relationships between fine-scale seabird

aggregations in the APF and the physical and
biological variables of the front.

2. Methods

2.1. Study area

Voyage ANT-XIII/2 of R.V. Polarstern was
conducted from 4 December 1995 to 24 January
1996. In between two long return transects from
Cape Town south to Neumayer Station, the period
from 23 December 1995 to 8 January 1996 was
dedicated to study of the APF. Two grid-transects
of different sizes were made (Fig. 1). First, we
made a ‘Coarse-Scale Grid’ (Transect 6) with six
parallel north–south legs crossing the APF in the
area between 491–521S and 61–121E (area si-
ze7285� 380 km2). Based on gradient observa-
tions, the northeastern corner was selected for a
‘Fine-scale Grid’ (Transect 8) with 11 parallel
north–south legs over an area sized only about
130� 135 km2. Reduced visibility and weather
conditions resulted in poor coverage of seabird
observations in the Coarse Grid. Therefore, this
paper is focused on the analysis of the Fine Grid
with only general reference to the Coarse Grid and
adjacent areas (zones of 21 latitude (7220 km) to
the north and to the south of the grid areas).

2.2. Top predators

Birds were counted within a transect band along
the ship track, using contiguous time blocks of
10min according to the snapshot method (Tasker
et al., 1984; Van Franeker, 1994; Van Franeker
et al., 1997). Transect width was 300m, taken as
150 on each side of the track-line of the ship. Speed
of the ship during the count can then be used to
determine the area surveyed and the densities of
animals encountered. As far as possible, censuses
were conducted continuously from an open
observation post-installed centrally on top of the
bridge of Polarstern (about 21m high). Only when
glare on the water or other conditions hampered
visibility, the transect width was reduced to 150m
on the one side of the ship with the best viewing
conditions. Distances were estimated with a range
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finder (Heinemann, 1981), calibrated by regular
accurate distance measurements with a Leica
Geovid binocular (laser system IR measurements).
Flying directions and foraging events are usually
recorded, but where large numbers occur in local
aggregations without obvious movement or direc-
tion all birds are simply recorded as ‘milling’
(Spear et al., 1992) and quantitative records of
individual foraging behaviour become impossible.
Dense aggregations of large numbers of milling

birds were the dominant phenomenon during
this study, so flying directions or frequencies
of foraging events are not specified. Birds follow-
ing or circling the ship were omitted from the
counts.

Marine mammals were recorded using both
strip- and line-transect methods (Hiby and Ham-
mond, 1989), but encounters in the APF grids were
too few to allow meaningful analysis at the spatial
scales used for birds. Mammal observations will
only be discussed in general terms with reference
to the larger area.

Carbon requirements of top predators can be
calculated by allometric formulae based on the
average body mass of each species. For Southern
Ocean seabirds, species-specific Field Metabolic
Rates (FMR: in kJ/day) can be calculated as
FMR=8.01�M0.704 (Nagy, 1987; M is the body
mass in grams, mainly taken from Croxall and
Gaston (1988) and listed in Table 1). From FMR,
the daily food requirement per individual of a bird
species was calculated assuming an average
energetic value of 4.5 kJ/g fresh food and an
assimilation efficiency of 75%. For the conversion
of fresh food to carbon intake, we assumed 10%
carbon content in the fresh food. Densities as
calculated from the 10-min counts can then be
used to estimate total food- or carbon-consump-
tion figures for separate species or the top predator
community as a whole. For further details see Van
Franeker et al. (1997).

Species identifications were not always possible:
if such was the case, species are lumped in the
lowest possible taxon (see Table 1). In general, we
have used names as in Harrison (1983) and for
example did not follow recent albatross taxonomy
(Robertson and Nunn, 1997). The prions or
whalebirds form a particular problematic bird
group in field identification and taxonomy (War-
ham, 1990). All prions recorded in this study
appeared to belong to the group of broad-billed
prions (the ‘Pachyptila vittata aggregate’), which
includes the Broad-billed Prion (P. vittata),
Salvin’s Prion (P. salvini), and Antarctic Prion
(P. desolata). We suspect that the prions in our
APF study area were Antarctic Prions, but will
refer to them as ‘broad-billed prions’ (the ‘P.

vittata -group’).
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Fig. 1. Study area: Location, transect lay-out, and position of

10-min bird counts in the Coarse-Scale Grid (Transect 6, open

circles for each count) and the Fine-Scale Grid (Transect 8,

cross lines for each count) in the APF during ANT-XIII/2. Both

grids were sailed from west to east. The large grid measured an

area of E380� 285km2 and was transected by grid legs about

75 km apart, whereas the small grid measured about

135� 130 km2 with grid legs about 13 km apart.
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Table 1

Summary of transect information and bird observations during transects in and near the Antarctic Polar Front

Fine-Scale

Grid (Transect

8)

Coarse-Scale

Grid (Transect

6)

Zone 21 south

of the APF

grids

Zone 21 north of

the APF grids

Census dates 1–5 Jan 096 24–29 Dec 095 10 Dec–18 Jan 8 Dec–12 Jan

Latitudinal range (1S) 491400–50149’ 491260–521000 521000–541000 471300–491300

Longitudinal range(1E) 91300–111230 61000–111240 �01160–101220 61290–121340

Water temp. range 3.1–5.41C 2.4–5.51C 0.1–3.7 3.5–5.81C

Nr. of 10min counts 269 233 121 64

Surface counted (km2) 199.4 194.8 127.6 53.7

Seaweed density 0.196 0.128 0.071 0.037

Bird densities (n/km2) Fine scale Coarse scale Zone 21 south Zone 21 north Scientific name (body mass in

g)

Broad-billed prions 18.12 9.02 1.76 0.15 Pachyptila vittata group (162)

Soft-plumaged Petrel 0.94 0.60 0.27 0.17 Pterodroma mollis (310)

Great Shearwater 0.37 0.19 0.04 + Puffinus gravis (834)

Black-bellied

Stormpetrel

0.24 0.42 0.21 0.04 Fregetta tropica (56)

White-headed Petrel 0.17 0.08 + 0.06 Pterodroma lessonii (750)

Kerguelen Petrel 0.08 0.02 0.11 Pterodroma brevirostris (360)

White-chinned Petrel 0.05 0.02 0.01 0.02 Procellaria aequinoctialis

(1270)

Sooty Shearwater 0.05 + Puffinus griseus (787)

Diving Petrel sp. 0.04 0.05 0.06 Pelecanoides sp. (134)

Gray Petrel 0.02 0.03 0.01 + Procellaria cinerea (1040)

Giant Petrel sp. 0.01 + 0.02 + Macronectes sp. (4500)

Gray-headed Alb. 0.01 0.01 0.02 0.04 Diomedea chrysostoma (3790)

Black-browed Alb. 0.01 + 0.02 0.02 Diomedea melanophris (3790)

Wandering Alb. 0.01 0.03 + + Diomedea exulans (8730)

Cape Petrel 0.01 0.01 0.02 + Daption capense (425)

Arctic Skua 0.01 0.01 Stercorarius parasiticus (536)

Little Shearwater 0.01 0.06 Puffinus assimilis (225)

Antarctic Skua + + 0.008 + Catharacta lonnbergi (1536)

Yellow-nosed Alb. + + Diomedea chlororhynchos

(2060)

Eudyptes penguin sp. + 0.015 Eudyptes sp. (3650)

Light-m. Sooty Alb. + 0.005 + + Phoebetria palpebrata (2840)

Great-winged Petrel + Pterodroma macroptera (560)

Wilsons Stormpetrel + Oceanites oceanicus (36)

Sooty Albatross 0.005 0.019 Phoebetria fusca (2510)

Art/Ant/Ker Tern + Sterna sp medium (120)

Blue Petrel 0.008 Halobaena caerulea (200)

Chinstrap Penguin + Pygoscelis antarctica (4150)

Southern Fulmar + Fulmarus glacialoides (775)

Totals birds Fine scale Coarse scale Zone 21 south Zone 21 north

Density (n/km2) 20.12 10.48 2.55 0.56

Biomass (kg/km2) 3.98 2.30 0.70 0.42

Food-req. (kg/km2/

day)

1.98 1.06 0.29 0.12

C-cons. (kg/km2/day) 0.20 0.11 0.03 0.01

Bird species listed according to abundance in the Fine-Scale Grid.
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2.3. Additional data

In association with each 10-min top pre-
dator count, visual observations were made of
weather and sea conditions. A wide range of
further variables is continuously monitored by
automatic sensors on board Polarstern and data
are stored in the ship’s POLDAT database system
on VAX computer. Among these are positional
data, speed, heading, water depth, a range of
weather data, and surface water properties such as
temperature and salinity at a depth of 8m (ships
pump). We pooled POLDAT data for 10-min time
frames to allow direct comparison with top
predator data.

2.4. Phytoplankton and primary production

As an assessment of the standing stock of
phytoplankton, concentrations of chlorophyll-a
(Chl-a) were measured underway by fluorescence
methods according to Bathmann et al. (1997b).
The water was taken from the ship’s pump at 8m
depth, the same as used for temperature and
salinity measurements. For the purpose of this
paper, continuous fluorescence measurements ori-
ginally averaged over 5-min periods, were paired
to 10-min averages for direct comparability with
bird data. The in vivo Chl-a fluorescence measure-
ments were made with a Turner-Design flow-
through fluorometer. The fluorometer readings
were converted into Chl-a concentrations based on
measurements of extracted pigment from triplicate
1 l subsamples taken every 3 h during the duration
of the cruise. Extracted Chl-a and phaeopigments
were determined after filtration of 1 l of seawater
onto GF/F filters. The filters were placed in 90%
(v/v) acetone/water and homogenized in a cell mill
for 5min. Fluorometric measurements were per-
formed before and after acidification with two
drops of 1N HCl (Strickland and Parsons, 1972;
Evans et al., 1987). Filters were measured within a
few days on board.

The standing stock of phytoplankton, as mea-
sured by Chl-a, is not necessarily an appropriate
measure for the primary production that takes
place at the moment of sampling. Therefore, we
use the undersaturation of carbon dioxide in the

surface water as compared to air concentrations as
a measure of total primary production (Bakker
et al., 1997). The partial pressure of CO2 in air
(fCO2air) and in water (fCO2water) was measured
using a home-built extraction unit/analyser includ-
ing a Li-Cor (LI-COR, Model 6252) infrared
analyser (Stoll, 1994). Air was pumped through
Dekabon tubing from the crows nest to the
laboratory, water was taken from the ship’s pump
at 8m depth and led through an equilibrator
(Bakker et al., 1997). The system is calibrated
using reference gases, which in turn had been
calibrated vs. National Oceanic and Atmospheric
Administration (NOAA) certified standard gas
mixtures (accurate to 0.01 ppm) before and after
the cruise. The CO2 undersaturation is defined as
dCO2=fCO2air�fCO2water. Data are averaged over
10-min periods. In order to uncouple primary
production from the standing stock of phyto-
plankton, we define primary-production rate as the
ratio of dCO2 per unit Chl-a (atm/g/l) in the water.

2.5. Zooplankton

Underway measurements of a range of variables
were possible during ANT XIII/2 by the deploy-
ment of sensors mounted on the towed profiling
vehicle SeaSoar (Pollard, 1986). SeaSoar was
towed behind the ship at 8 knots (4m/s), undulat-
ing between the surface and 350m every few km.
ANT XIII/2 was the first cruise during which an
Optical Plankton Counter (OPC) (Herman, 1988)
was mounted on SeaSoar (Pollard et al., 2002).
The OPC counts and records the sizes of particles
with Equivalent Spherical Diameters (ESD) be-
tween 250 mm and about 12mm. Calibration is
discussed in detail by Pollard et al. (2002). For the
purpose of this paper our interest lies in the spatial
patterns in the upper surface layer. To avoid bias
from occasional air bubbles very close to the
surface (top few metres) and to maximize available
data given that the SeaSoar occasionally turned
before it reached the surface, we shall here use data
sampled in the 8m depth range between 17 and
25m depth. Data were thus binned at successive
intervals of latitude approximately spanning
0.0491 (5.5 km). The counts have been normalized
to counts/m3 by dividing by the volume of water
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that passed through the OPC in each bin. ESD was
used to split the counts into three size classes,
nominally 250–500, 500–1000, and >1000 mm
ESD. When we report on total counts (n/m3) these
are dominated by the smallest size classes. Greatest
confidence in our spatial patterns should be given
to the data in the two smaller size classes, as in the
larger size class the number of individuals per bin
in the APF surface layers becomes small for
statistics on spatial distributions. For specific
details on size frequencies and distributions,
derived from larger data-sets and full depth
ranges, see Pollard et al. (2002).

2.6. Statistics

Regressions with linear and exponential models
were used to analyse relations between variables
that were normally distributed (Lane, 1993). The
linear models were fitted using a least-sum-of-
squares method (Lane, 1993, p. 366), while the
exponential models were fitted with a maximum
likelihood method (Lane, 1993, p. 434). Whenever
dependent variables were not normally distributed,
General Linear Models (GLM) were used to
analyse their relations with other variables (Lane,
1993, pp. 413–434). The distribution of the
variable was then assumed to be quasi-poisson,
and the logarithm was used as link-function. In
order to analyse exponential relations between
variables, which are not normally distributed, an
exponential parameter was introduced in the
GLM, which was estimated iteratively (Lane,
1993, pp. 426–427).

The time scales, and therefore also the spatial
scales, of the data collection of the different
variables were not always identical. In order to
cross-relate the geographical distribution of dif-
ferent variables, the data were gridded with a
kriging method (Cressie et al., 1991). This proce-
dure resulted in a set of interpolated values of each
variable on designated gridnodes, which were
spaced identically for all variables. The number
of designated gridnodes used in the statistical
analyses will be discussed in the results section on
spatial autocorrelation.

The gridded data also can be used to produce
contour maps. These were produced with the

program Surfer (Version 6.02 for Windows).
Contour maps are based on gridmaps with 2200
gridnodes. With the option ‘terrain modelling’ in
this program it is also feasible to calculate
gradients of variables in space. Using this method
a gradient is defined as being the angle between the
surface of the contour map and the flat surface.
Hence, no gradient is 01, an infinite gradient is 901.
In calculations relating physics to biology, we have
not used actual temperatures or salinities, but the
gradients.

2.7. Spatial autocorrelation

Autocorrelation is a common problem whenever
analysing seabird census data gathered on a cruise
track (Schneider, 1990; Schneider and Bajdik,
1991). When a data-set shows autocorrelation this
means that an observation in a certain 10-min
count is more likely to have a similar density to a
count adjacent to it than to one farther down the
track (Cliff and Ord, 1973). Autocorrelation
indicates that the observations are spaced in a
smaller scale than the spatial extent of the physical
or biological structures that are being analysed.
The same structures may thus be sampled repeat-
edly and ‘pseudo-replication’ may be the result
(Hurlbert, 1984). When analysing a data-set that
shows autocorrelation within variables, the rela-
tions between variables are likely to show exag-
gerated significance of the cross-correlations.
Conclusions based on such an analysis may be
overstated. Autocorrelation also shows the extent
of spatial structures in the data-set (Cliff and Ord,
1973), and this may be used to analyse the spatial
clustering of the density of variables. For the
analysis of the spatial autocorrelation we used the
statistical program Genstats (Wilson and Wel-
ham, 1993).

3. Results

Observations of seabirds were made in 296
standard 10-min counts during the Fine-Scale
Grid (Transect 8) from 1 to 5 January 1996.
Because of day-light limitations, blocks of top
predator counts are alternated with periods
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without observations (Fig. 1). Table 1 summarizes
transect information and results from all top
predator observations and makes a comparison
to data from the Coarse-Scale Grid (Transect 6)
in the APF and the bordering zones of 21C
latitude to the north and to the south. Because
our focus is on seabirds that feed in the upper
surface layers, we selected subsets of data from
other measurements specifically for the surface.
For this reason we used data on physics and
phytoplankton from water collected continuously
by the ship’s pump at 8m depth, rather than
SeaSoar data. Zooplankton were sampled by
SeaSoar on a different scale, which resulted for
example in 253 data points for zooplankton
densities in the Fine-Scale Grid.

Because we selected data for surface layers, our
graphical presentations and calculations on spatial
patterns may differ from those in other papers in
this issue (e.g., Pollard et al., 2002; Strass et al.,
2002a, b; V!elez et al., 2002) which often deal with
deeper water layers (e.g., around the temperature
minimum at 150–200m depth) or integrate data
over larger depth ranges. Surface and subsurface
structures of the APF may be widely separated
(Read et al., 2002).

3.1. Sea-surface temperature and salinity

Surface-water temperature and salinity showed
a clear north–south pattern, indicating the surface
position of the front (Fig. 2 for the Coarse-Scale
Grid; Fig. 3 for the Fine-Scale Grid). The tem-
perature decreased north to south, with two areas
showing steeper temperature gradients: there was
an east–west band at E501S, with a diversion
going south at E101E. Salinities in the surface
water increased north to south, with gradients
being strongest in a spatial pattern similar to that
of water temperature. The Fine-Scale Grid, shown
by the inserted rectangle in Fig. 2, was positioned
over the area with the steepest gradients, viz. the
strongest ‘Frontal’ characteristics. Based on sub-
surface characteristics Strass et al. (2002b) de-
scribed the area as a meander structure of the APF
with a cold cyclonic eddy located to its south.

3.2. dCO2 and chlorophyll-a

For further variables, we concentrate on the
Fine-Scale Grid (Transect 8). Patterns of under-
saturation of CO2 in the surface water in the small
grid are shown in Fig. 4A. Since dCO2 is defined as

6 7 8 9 10 11 12
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(A)  (B)

Fig. 2. Coarse-Scale Grid (Transect 6) physics: (A) temperature (1C) and (B) salinity (0/00) patterns in the surface water (8m depth)

showing the larger structure of the APF in relation to the later Fine-Scale Grid (inserted rectangle; see Fig. 3). Axes scaled by whole 1S

and 1E.
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fCO2air�fCO2water, positive values of dCO2 indi-
cate undersaturation of the water as a consequence
of CO2 uptake by phytoplankton growth. Darker
colours in Fig. 4A thus correspond to higher total
primary production. The highest undersaturation
is located in the north-west part. The average
dCO2 is �0.373 m atm (range �14.45 to
+17.72 matm). Relatively low productivity values
are suggested for the south-east part, and in a
‘finger’-shaped intrusion in the west part of the
survey area. A very similar spatial pattern results if
primary-production rate is mapped (primary
production per unit chlorophyll; not shown).

Patterns in surface phytoplankton standing
stock, as shown by the Chl-a distribution
(Fig. 4B), are similar to those of dCO2, with again
minimum values in the south-east and in a finger-
shaped intrusion in the west. The distribution of
chlorophyll patterns in the Fine-Scale Grid shows
enhanced concentrations along the meandering
stream of the Polar Front in the north and a
southward tongue, with diatoms being the dom-
inating phytoplankton forms (Smetacek et al.,
2002). The average concentration of Chl-a in the
Fine-Scale Grid was 1.06 mg/l (range from 0.46 to
2.25 mg/l). Chl-a concentrations in the Coarse-

Scale Grid were significantly lower (t-test,
po0:001) at an average of 0.86 mg/l and range of
0.28–2.37 mg/l.

3.3. Zooplankton

Zooplankton, measured by OPC counts on
SeaSoar, were counted in different size classes.
The density distribution of zooplankton of all size
classes shows a minimum at the south-east corner
and in the well-defined finger-shaped area in the
west, and maximum densities were encountered in
the north and in a band diagonally across the
survey area (Fig. 4C). Similar distributional pat-
terns resulted if separate size classes were mapped.
In terms of relative abundances of different size
classes, the smallest zooplankton (OPC diameter
o0.5mm) are superabundant (nearly 75%), with
hardly any contribution to numbers by the largest
size class (>1mm). However, in terms of volume/
biomass, the medium and large size classes gain
considerably in importance (Table 2). Volumes
were calculated assuming particles in each size
class to be spheres with a radius of half the average
OPC diameter of the size class (375, 750, and
2000 mm). The volume ratio between different size
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Fig. 3. Fine-scale Grid (Transect 8) physics: (A) temperature (1C) and (B) salinity (0/00) patterns in the surface water at 8m depth.

Axes scaled by bold print whole degrees of latitude and longitude, with intermittent subdivisions in decimals. Scaling has been omitted

in further graphs of the Fine-Scale Grid area.
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classes may be assumed to be proportionate to
ratios in biomass and carbon contents.

For further details on depth distributions of
different sizes and biovolumes, see Table 2 and
Fig. 8 in Pollard et al. (2002), indicating that the
larger size classes of zooplankton were particularly
rare in the upper few metres in the APF. Data
from areas near the ice edge showed that larger
zooplankton like euphausids are detected by the
OPC, so we are certain that these were uncommon
in the APF, and particularly so near the surface.

Fig. 4. Biology in the upper surface layer of the Fine-Scale Grid area. Scales of latitude and longitude as in Fig. 3. (A) Primary

production as derived from undersaturation of CO2 in the surface water at 8m depth (dCO2=fCO2air�fCO2water; matm). (B)

Phytoplankton stocks as derived from concentration of Chl-a in surface water at 8m depth (in mg/l). (C) Zooplankton stocks by density

(n/m3) of all sizes of zooplankton in the surface layer (17–25m depth). Smaller sizes dominate. (D) Seabird density (all species, n/km2).

NB: the black, non-mapped corner areas result from insufficient data points nearby to calculate realistic grid values.

Table 2

Average abundance and biovolume for different zooplankton

size classes in the surface layer of the Fine-Scale Grid

Zooplankton Density Volume

Size class (n/m3) (%) (mm3/m3) (%)

250–500mm 9194 (73) 275 (20)

500–1000 mm 3310 (26) 731 (52)

>1000mm 96 (1) 402 (28)

All sizes 12600 (100) 1408 (100)
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Net-catches indicated that zooplankton were
mainly copepods and copepodites, with adults of
the cyclopoid copepod Oithona spp. dominating
the o0.5mm size class. A variety of copepod
species occurred in the larger classes (Pollard et al.,
2002).

3.4. Seabirds

In the Fine-Scale Grid, 23 different seabird
species were identified (Table 1). Seventeen of
these are included in density counts, but six others
were only seen outside the transect-bands or
crossed it in between the snapshot counts. Tube-
nosed seabirds dominated in the APF, with only
few individuals of other bird groups (skua’s, terns,
penguins). Table 1 summarizes similar data for the
adjacent areas.

The combined density of all birds in the Fine-
Scale Grid ranged from 0 to 388 individuals per
km2 in different counts and averaged at about 20
birds/km2, with median less than 7/km2. The
density distribution showed a distinct pattern,
with higher densities occurring more or less along
the areas with relatively steep temperature gradi-
ents (Fig. 4D). Only six species occurred in more
then 5% of the 10-min counts in the Fine-Scale
Grid: Black-bellied Stormpetrel (Fregatta tropica),
White-headed Petrel (Pterodroma lessonii), Ker-
guelen Petrel (P. brevirostris), Soft-Plumaged
Petrel (P. mollis), broad-billed prion (P. vittata-
group), and Great Shearwater (Puffinus gravis).
These species showed different distributional
patterns in the Fine-Scale Grid (Figs. 5A–F). Four
types of distribution may be distinguished:

(i) maximum densities in the south-east area of
the small grid (i.e. on the cold side of the
front): Black-bellied Stormpetrel and the
White-headed Petrel;

(ii) no clear pattern in densities: the Kerguelen
Petrel and the Soft-plumaged Petrel;

(iii) maximum densities along the temperature
gradient: the broad-billed prion;

(iv) maximum densities in the ‘finger’-shaped area
in the west: the Great Shearwater.

Of these species, the broad-billed prion occurred
in highest densities (average, 18.12/km2; median,

3.86/km2; range, 0–384/km2), and concentrated in
the area of the 41C isotherm.

3.5. Spatial autocorrelation

In order to assess the extent of the autocorrela-
tion within our data-set, we analysed a part of it
that contained consecutive 10-min counts, col-
lected in E4 h (n ¼ 25; covered distance E65 km).
Data for broad-billed prions and Chl-a were
analysed over the same spatial scale and can
therefore be compared directly. Broad-billed
prions show autocorrelation to an extent of 5–
10 km, while for Chl-a this occurs to about the
distance of 15 km (Fig. 6). Seabirds are of main
interest in the current research, and therefore the
data-sets were corrected for the spatial autocorre-
lation of the broad-billed prions. This implies that
data points used for regression analyses were
calculated by gridding procedures with gridnodes
spaced at 715 km distance, with no overlap in the
areas of integration (integration over 0.45 of the
radial distance between gridnotes). These proce-
dures assured that the data-set for broad-billed
prions showed no significant autocorrelation. All
other variables were gridded with the same
procedure to obtain a data-set for analysis of
cross-relations between all variables. Remaining
effects of different autocorrelation scales among
other variables are deemed to be of minor
importance in the relations.

3.6. Regression and correlation analyses

We analysed relationships between variables by
means of regression analyses or General Linear
Model (GLM) procedures (Tables 3 and 4 and
Discussion). Results from these analyses are
expressed as the percentage of variance or
deviance of the dependent variable that is ex-
plained by the independent variable. However,
many other studies report correlation coefficients
(see for instance Abrams, 1985aand Griffiths et al.,
1982). In a correlation analysis the form of the
relation is not taken into account and thus
provides less information than a regression analy-
sis. For comparative purposes, we applied correla-
tion as well as regression analyses to our major
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variable-combinations. There appears to be a
predictable relationship between correlation coef-
ficients and percentages of explained variance in
our data, which may be expressed as:
CC=0.77� (1–0.97PV) (Po0:001; CC=correla-
tion coefficient; PV=percentage explained var-
iance). This equation may be applied to all detailed
regression analyses shown in Tables 3 and 4 to
translate our results to approximate correlation
coefficients.

4. Discussion

The seabird densities in our Fine-Scale Grid
over the APF ranged from 0 to almost 400 ind/
km2. The arithmetic mean density (20.12 ind/km2)
is amongst the highest recorded in the APF
(Abrams, 1985b; Pakhomov and McQuaid,
1996), in spite of the large distances to the nearest
potential breeding grounds. Distance to colony
would be irrelevant if non-breeders had prevailed

Fig. 5. Fine-scale Grid: density distributions (n/km2) of seabird species that occurred in more than 5% of the 10-min counts. Black

areas in corners reflect insufficient data for mapping. Latitude and longitude scaling as in Fig. 3. (A) Black-bellied Stormpetrel. (B)

White-headed Petrel. (C) Kerguelen Petrel. (D) Soft-plumaged Petrel. (E) Broad-bellied prior. (F) Great Shearwater.
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in our study, but in mid summer non-breeders are
expected to have advanced stages of primary
moult, and such was not observed among our
major species. Of the potential breeding locations,
only Bouvet Island is relatively close at 7700 km,
but this location supports only marginal popula-
tions of broad-billed prion and Black-bellied
Stormpetrel and none of the other major species
in this study (Mehlum, 1986; Bakken, 1991). Other
potential origins such as the islands of Tristan da
Cunha and Gough to the north-west (Williams,
1984; Fraser et al., 1988), Prince Edward and
Marion to the northeast (Williams, 1984) and
South Sandwich to the southwest (Croxall et al.,
1984; Convey et al., 1999), are all at distances of
2000–2500 km away. South Georgia, the strong-
hold of the Antarctic Prion P. desolata with an
estimated population of 22 million pairs (Croxall
et al., 1984), is over 3000 km away. Because of the

Table 3

Regression analyses of relationships between variables in the Fine-Scale Grid (Transect 8) listed are level of significance (% variance

accounted for; degree of freedom)

Temperature

gradient

dCO2 Chl-a dCO2/Chl-a Zooplankton all

sizes

dCO2 *** (58;35)

Chl-a *** (58;34)g *** (58;47)g

dCO2/Chl-a *** (68;34)e *** (94;47) *** (82;47)

Zooplankton all sizes *** (57;35)g *** (77;55)eg *** (92;50)eg *** (85;47)eg

250–500mm *** (45;35)g *** (69;55)eg *** (90;50)eg *** (81;47)eg *** (90;61)

500–1000mm *** (62;35)g *** (70;55)eg *** (73;50)eg *** (69;47)eg *** (74;61)

>1000mm *** (26;35)g *** (31;55)eg *** (26;50)eg *** (30;47)eg *** (45;61)

b.b. prion all records ** (11;33)g *** (21;46)g ** (15;49)eg *** (24;46)eg n.s. (5;49)g

b.b. prion pos. records ** (23;32)g *** (24;41)g ** (27;43)eg *** (32;41)g ** (14;43)g

Note: Two data-sets were analysed for broad-billed prions: one including (‘b.b. prions all records’) and one excluding (‘b.b. prion

positive records’) gridnodes where broad-billed prion density was zero.

***, pp0:001; **, 0:001opp0:01; *, 0:01opp0:05; n.s., p > 0:05:
eExponential relation.
gRegression with GLM (see methods).
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Fig. 6. Autocorrelation within a series of 25 directly bordering

10-min observations on the cruise track, as a function of the

distance between the observations. Each dot represents an

observation-lag (first lag compares observations 1–2, 2–3, etc.;

second lag compares observations 1–3, 2–4, etc.). For observa-

tions between the solid lines the autocorrelation is not different

from 0% at 95% confidence interval (Wilson and Welham,

1993).

Table 4

Details of relationships between broad-billed prions and zooplankton size classes

Zooplankton (250–

500mm)

Zooplankton (500–

1000mm)

Zooplankton

(>1000mm)

Zooplankton all

sizes

b.b. prion all records * (10;49)g n.s. (0;49)g n.s. (0;49)g n.s. (5;49)g

b.b. prion pos. records ** (20;43)g n.s. (2;43)g n.s. (0;43)g ** (14;43)g

**, 0:001opp0:01; *, 0:01opp0:05; n.s., p > 0:05:
gRegression with GLM (see methods).
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large distance to breeding grounds, and the lack of
directional movement among observed birds (see
methods), it is not likely that our numbers or
distributional patterns were influenced by com-
muting birds (Ribic and Ainley, 1997). Many birds
in our high-density patches were actively feeding.
Thus, the distributional pattern of seabirds in the
area may be considered to reflect patterns of food
availability and consumption.

4.1. Carbon consumption by the top predator

community in the APF

The seabird community in our APF grids and
nearby areas was completely dominated by pro-
cellariiform (tube-nosed) seabirds. The same was
recorded during nearby APF crossings in spring
1992, although with slightly more penguin ob-
servations (Van Franeker et al., 1997). The pattern
of seabird carbon requirements in the Fine-Scale
Grid (Fig. 7) is very similar to the density
distribution, with maximum requirements in a belt
crossing the grid from the east to the west along
about 501S, plus a diversion going southwest from
E101500E. The arithmetic mean of the carbon flux
to the seabird community in the Fine-Scale Grid is
0.20mg C/m2/day (Table 1). This represents about
0.03% of the estimated daily primary production

during our study (585mg mg C/m2/day; Strass
et al., 2002a). Assuming similar bird densities year-
round (the major species are more or less resident
in the Southern Ocean), this translates to an
annual carbon consumption of 0.07 g C/m2/year
close around the APF. Abrams (1985b) reported a
similar annual carbon flux of 0.095 g C/m2/year for
the APF. These are high values for an open-water
deep-ocean system, and compare to the lower end
of the range of continental-shelf-based systems
(Diamond et al., 1993). In the Barents Sea,
seabirds are estimated to consume 0.05 g C/m2/
year (Sakshaug, 1997). Carbon consumption by
birds in the Coarse-Scale Grid was only half of
that in the fine grid, and reduced by an order of
magnitude at further distance from the front
(Table 1).

Using calculation methods as in Van Franeker
et al. (1997), our few observations of marine
mammals lead to rough estimates for mammal
carbon consumption in these areas as: Fine Grid
0.11; Coarse Grid 0.07; zone south 0.09; and zone
north 0.00mg C/m2/day. Species involved were
Hourglass Dolphin Lagenorhynchus cruciger, Fin
Whale Balaenoptera physalus, Humpback Whale
Megaptera novaeangliae, unidentified small whale,
and a Fur Seal Arctocephalus sp. Observations
were too few to allow spatial analysis.

Annual primary production in the APF has
been estimated to be 83 g C/m2/year (Wefer and
Fischer, 1991). At that level, carbon consumption
rates by the top predator community (birds and
mammals) in and near the APF are in the order of
0.01–0.1% of primary production. Such values are
in agreement with those for open-water zones in
the Southern Ocean in an earlier study (cf. Table 4
in Van Franeker et al., 1997).

4.2. Broad-billed prions

The distribution pattern of the bird carbon
requirements in the Fine-Scale Grid is dominated
by broad-billed prions. Figs. 8A and B show two
north–south cross-sections of the APF zone (cross-
sections through Fig. 7, split into carbon con-
sumption by the broad-billed prion and that of all
other birds). The section along 101460E shows a
transect leg with relatively few birds: here the

Fig. 7. Carbon consumption by seabirds in the Fine-Scale Grid

area (mg C/m2/day). Latitude and longitude scaling as in Fig. 3.
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broad-billed prion represents about 50% of the
total carbon requirements. However, only a bit
further west, along 111040E, its carbon require-
ment exceeds that of all other species more than
five times. The figures emphasize the patchy nature
of distributions even within a strong front like the
APF.

For the whole Fine-Scale Grid, broad-billed
prions represented 83% of the total carbon
requirement. Broad-billed prion variance explains
E96% of the requirements of the total bird
community. Thus, broad-billed prions not only
require most of the carbon in this area, but also
determine the spatial distribution of the commu-
nity carbon requirement. Because of the impor-
tance of the broad-billed prion in the distribution
of the seabird density and carbon requirements, we
will discuss this species in more depth, and relate
its distribution to other variables.

4.3. Food web structure

With available data, we can consider a simpli-
fied food web of phytoplankton production to
zooplankton and ultimately seabirds, as driven by
physical characteristics of the APF. Our focus is
on the surface layer only, which can have aberrant
spatial patterns from analyses of other depth
ranges. Large zooplankton, fish, and cephalopods
form an important intermediate food web level for

seabirds (Croxall, 1987; Rodhouse and White,
1995; Rodhouse et al., 1996) of which data are
lacking in our study. Nevertheless, small copepod-
sized zooplankton being an important prey of
prions (Prince, 1980; Gartshore et al., 1988; Klages
and Cooper, 1992; Liddle, 1994; Reid et al., 1997),
we will relate the distribution of broad-billed
prions to the data that we do have and will discuss
the relevance of this analysis. Evidently, this is a
simplification of complicated food web interac-
tions (Lavigne, 1996).

Water temperature and salinity in our study
area showed a distinctive pattern of relatively steep
gradients (Figs. 2 and 3). The converging water-
masses also were visualized by the concentrated
occurrence of floating patches of seaweed
(Table 1). The spatial pattern of the temperature
gradient seemed to be followed by that of high
primary production (dCO2; Fig. 4A), and indeed
regression analysis confirmed a highly significant
linkage between the phenomena (Table 3).
Furthermore, a highly significant relationship
existed between total primary production (dCO2)
and the standing stock of phytoplankton (Table
3). Strass et al. (2002b) show the same for depth-
integrated values and describe that meandering
within the Polar Front and stabilization of the
upper water column resulted in development of
high phytoplankton biomass. The primary pro-
duction per unit phytoplankton (dCO2/Chl-a) was

latitude South
50 51

0.75

0.50

0.25

0

prions
other birds

latitude South
50 51

0.75

0.50

0.25

0

m
gC

/m
2 /

da
y

m
gC

/m
2 /

da
y

(A) (B)

Fig. 8. North–south cross-sections of Fig. 7 at two longitudes (A) 101460E and (B) 111040E, showing separate carbon requirements of

the broad-billed prions as the main consumers, and the remainder of the seabird community, in the Fine-Scale Grid (gridded data).
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also significantly related to phytoplankton stand-
ing stock and temperature gradient of the water
(Table 3). In other words, zones with the steepest
physical gradients spatially coincide with the
highest primary-production rates (production per
unit Chl-a), high standing stocks of algae, and
high total primary production.

Although some sort of time lag may be
anticipated, stocks of phytoplankton-grazing zoo-
plankton are expected to respond to situations of
productive and dense phytoplankton stocks and
high total primary production. Results of regres-
sion analyses (Table 3) confirmed that indeed
densities of all zooplankton size classes showed
highly significant relationships to phytoplankton
abundance/productivity and the physical gradients
in the surface water.

The broad-billed prion showed significant posi-
tive relations with the frontal temperature gradi-
ents and phytoplankton variables, but less clearly
so with zooplankton densities: there is a positive
relation (Fig. 9), but not significant (Table 3;
broad-billed prions all records). Lack of signifi-
cance could have several backgrounds. Prey
density is not necessarily the same as prey
availability for birds (Heinemann et al., 1989).
Also, there may be threshold levels in prey density
(e.g., Mehlum et al., 1999) and bird density

(Schneider, 1990) before bird concentrations build
up. Finally, there will be a time lag before prey
concentrations are detected by birds. Such delay in
response will exist in spite of the fact that seabirds
use sophisticated cues such as olfaction to detect
prey (Nevitt et al., 1995, 1999a, b).

For prions, Nevit (2000) showed that dimethyl-
sulfide (DMS) is an attractive odour: DMS is
produced by phytoplankton when grazed by
zooplankton.

Quantitative relationships between birds and the
environment may be clearer above initial trigger
levels of prey density or initial predator density. If
we simply define initial bird density as above zero
(Table 3; broad-billed prions positive records) the
relationship between prions and zooplankton (all
sizes OPC) is significant. The existence of a
threshold level in zooplankton density is suggested
by Fig. 9, but its proper quantification in the
prion-zooplankton relationship would require
data collection at even considerably finer scales
than was possible in our study, with continuous
zooplankton records in the top metre of the water
surface.

Closer analysis of the relations between broad-
billed prions and different size classes of zoo-
plankton (Table 4) shows that the positive link
mainly exists in the smallest zooplankton: the
relationship is significant in the size class of 250–
500 mm OPC diameter also when zero records of
prions are included in the analysis.

As this smallest zooplankton size class seems too
minute to be consumed by birds, a closer evalua-
tion is warranted. Copepods are an important part
of the diet of broad-billed prions (Prince, 1980;
Klages and Cooper, 1992; Liddle, 1994). Small
cyclopoid copepods of mainly Oithona spp domi-
nated our smallest OPC size class (Pollard et al.,
2002). Would prions be able to forage on such
small prey?

Assuming that OPC measurements represent the
diameter of a sphere equivalent in volume to that
of the particle measured (ESD-see methods), we
should attempt to translate this to actual copepod
morphology. Using length–weight relationships
for several calanoid types of copepods (Klein
Breteler et al., 1982; Klein Breteler pers. inf.;
Mizdalsky, 1988), it may be estimated that the
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body length (cephalothorax+urosome) of a cope-
pod would be about twice its measured ESD
(Table 5) whereas cephalothorax-width is slightly
below half its ESD. Copepods in our smallest size
class would thus measure between 0.5 and 1mm in
length, not including the (often substantial)
antennae and tail-elongations.

Broad-billed prions possess lamellae in the bill
like the filter plates in baleen whales (Warham,
1990; Klages and Cooper, 1992), which allow them
to filter feed for small zooplankton like copepods.
Minimum lengths of copepods in diet samples of
broad-billed prions have been recorded as 0.7mm
in P. vittata (Klages and Cooper, 1992) to 0.9mm
in P. desolata (Prince, 1980); average lengths in
samples were 1.7mm and higher.

From bill morphology, Klages and Cooper
(1992) concluded that P. vittata has a filter mesh
size of 0.16mm between the numerous lamellae.
Within the group of broad-billed prions, they
suggested that P. desolata was a less efficient filter
feeder because it has a smaller bill with fewer
lamellae, whereas P. salvini takes an intermediate
position. Recent measurements (Norbert Klages,
pers. commun.) in two P. desolata from Bouvet
Island demonstrated gaps between lamellae of 0.19
and 0.20mm, and 0.16mm in a P. salvini from
Marion Island. Using a 1:4 width to length ratio in
copepods (Table 5), all three ‘broad-billed’ prions
may thus be able to feed efficiently on copepod
prey with lengths from around 0.8mm upwards.
Taking into account that extremities of copepods
(antennae, legs, and tail elongations) were not
included in size calculations in Table 5, we
conclude that in our study area broad-billed prions
were feeding on zooplankton in the 250–500 mm
OPC size class and that the significant relationship
in Table 4 represents a direct causal trophic link.

Broad-billed prions also feed on larger zoo-
plankton and partly fish, sometimes even
predominantly (Gartshore et al., 1988; Reid et al.,
1997). The lack of significance in relations between
broad-billed prions and larger zooplankton in
Table 4 could be explained by lower abundance
of larger zooplankton, rendering seizing of in-
dividual larger prey less attractive than filter
feeding on the smallest zooplankton. Closer
evaluation of available OPC data for the top
0–5m surface layer suggests that abundance of the
smallest OPC size class remains similar or in-
creases all the way to the surface, but that larger
size classes increasingly avoid the upper surface
and do not show nocturnal migration into that
layer (Pollard et al., 2002). Thus, our usage of
OPC data from 17–25m depths (to obtain
complete coverage) is even likely to overestimate
the abundance of larger zooplankton (ESD
>500 mm) in the surface layer of the water where
broad-billed prions are able to feed. As indicated,
the OPC does measure presence of larger zoo-
plankton, which was demonstrated by measure-
ments far south of the APF. This supports the
idea that it was only the zooplankton in the
250–500 mm OPC size class that determined
the distributional pattern of the broad-billed
prions. Non-significance of the relationships to
the larger OPC classes does not mean that feeding
on larger zooplankton did not occur; it only
indicates that variability in densities of larger
zooplankton in the APF were not the primary
determinants of broad-billed prion distribution.
Our analyses thus show a remarkable spatial
coherence on a small-scale (within few tens of
kilometres) between physical frontal gradients in
the APF and the simplified food web up to the
level of small zooplankton feeding seabirds.

Table 5

Estimates for calanoid copepod dimensions in different OPC size classes (freshweight estimated from sphere volume)

OPC diameter ESD

(mm)

Freshweight

(mg)

Copepod length (mm)

(cephalothorax+urosome)

Copepod width (mm)

(cephalothorax)

250 0.008 0.47 0.11

500 0.065 1.00 0.22

1000 0.523 2.11 0.47

2000 4.187 4.50 1.00
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At this small spatial scale one might expect that
time lags for responses between different trophic
levels would obscure detectability of the patterns.
Apparently, in spite of dynamic interactions
between currents, wind and waves, the spatial
coherence of the APF gradient zones persists over
sufficient time to allow phyto- and zooplankton
stocks to build up to levels exploitable by seabirds.
Once these occur in a structured pattern, prions
can respond rapidly because of their speed of
movement and advanced searching techniques
such as olfaction.

4.4. The wider region and other top predators

Insufficient data are available to conduct similar
analyses in the Coarse-Scale Grid (Transect 6).
However, we can compare the relations between
Chl-a levels and zooplankton abundance (OPC, all
sizes) in both the grid areas (Fig. 10). The
regression lines appear similar and the asymptotes
of the different lines are not significantly different.
This indicates that spatial patterns and food web
structure of the Fine-Scale Grid are likely to be
valid in the Coarse-Scale Grid as well.

None of the other five regular seabird species in
the Fine-Scale Grid (Figs. 5A–D and F) showed a
distributional pattern as clear cut as that of the
broad-billed prion, and low densities impair
quantitative analyses. However, for all these five
species, it is clear that they do not concentrate

along the narrow steep gradient zone of the APF
in a manner similar to the broad-billed prion.
Dietary preferences of all five species are mainly
squid and fish, with only a minor crustacean
component (Prince and Morgan, 1987; Marchant
and Higgins, 1990; Del Hoyo et al., 1992), so one
to several trophic levels above the zooplankton
preyed on by broad-billed prions. Apparently,
these higher prey levels do not, on the scale
considered, concentrate along the narrow gradient
zone of the APF, at least not near the surface.
Why they do not is unclear to us: mobile predators
like fish would be expected to exploit similar types
of prey as broad-billed prions (copepod-sized
zooplankton).

However, on a wider spatial scale it is evident
that all trophic levels respond to increased
productivity in the APF. Most numerically im-
portant bird species show decreasing densities
away from the front (Table 1) and as discussed,
carbon consumption by the total bird and
mammal community follows that pattern. Time
lags between responses by subsequent trophic
levels, in combination with the dynamic nature
of the APF will gradually diffuse spatial patterns
and food web relations. Tackling such issues in
more detail will require considerable effort because
of sampling problems in quantitative surveys of
macroplankton, fish and squid, and decreasing
predator densities when stepping up the trophic
ladder.
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