75 research outputs found

    Substantial near-infrared radiation-driven photosynthesis of chlorophyll f-containing cyanobacteria in a natural habitat

    Get PDF
    © Kühl et al. Far-red absorbing chlorophylls are constitutively present as chlorophyll (Chl) d in the cyanobacterium Acaryochloris marina, or dynamically expressed by synthesis of Chl f, red-shifted phycobiliproteins and minor amounts of Chl d via far-red light photoacclimation in a range of cyanobacteria, which enables them to use near-infrared-radiation (NIR) for oxygenic photosynthesis. While the biochemistry and molecular physiology of Chl f-containing cyanobacteria has been unraveled in culture studies, their ecological significance remains unexplored and no data on their in situ activity exist. With a novel combination of hyperspectral imaging, confocal laser scanning microscopy, and nanoparticle-based O2 imaging, we demonstrate substantial NIR-driven oxygenic photosynthesis by endolithic, Chl f-containing cyanobacteria within natural beachrock biofilms that are widespread on (sub)tropical coastlines. This indicates an important role of NIR-driven oxygenic photosynthesis in primary production of endolithic and other shaded habitats

    Biochemical characterization of the carotenoid 1,2-hydratases (CrtC) from Rubrivivax gelatinosus and Thiocapsa roseopersicina

    Get PDF
    Two carotenoid 1,2-hydratase (CrtC) genes from the photosynthetic bacteria Rubrivivax gelatinosus and Thiocapsa roseopersicina were cloned and expressed in Escherichia coli in an active form and purified by affinity chromatography. The biochemical properties of the recombinant enzymes and their substrate specificities were studied. The purified CrtCs catalyze cofactor independently the conversion of lycopene to 1-HO- and 1,1′-(HO)2-lycopene. The optimal pH and temperature for hydratase activity was 8.0 and 30°C, respectively. The apparent Km and Vmax values obtained for the hydration of lycopene were 24 μM and 0.31 nmol h−1 mg−1 for RgCrtC and 9.5 μM and 0.15 nmol h−1 mg−1 for TrCrtC, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed two protein bands of 44 and 38 kDa for TrCrtC, which indicate protein processing. Both hydratases are also able to convert the unnatural substrate geranylgeraniol (C20 substrate), which functionally resembles the natural substrate lycopene

    Elusive Origins of the Extra Genes in Aspergillus oryzae

    Get PDF
    The genome sequence of Aspergillus oryzae revealed unexpectedly that this species has approximately 20% more genes than its congeneric species A. nidulans and A. fumigatus. Where did these extra genes come from? Here, we evaluate several possible causes of the elevated gene number. Many gene families are expanded in A. oryzae relative to A. nidulans and A. fumigatus, but we find no evidence of ancient whole-genome duplication or other segmental duplications, either in A. oryzae or in the common ancestor of the genus Aspergillus. We show that the presence of divergent pairs of paralogs is a feature peculiar to A. oryzae and is not shared with A. nidulans or A. fumigatus. In phylogenetic trees that include paralog pairs from A. oryzae, we frequently find that one of the genes in a pair from A. oryzae has the expected orthologous relationship with A. nidulans, A. fumigatus and other species in the subphylum Eurotiomycetes, whereas the other A. oryzae gene falls outside this clade but still within the Ascomycota. We identified 456 such gene pairs in A. oryzae. Further phylogenetic analysis did not however indicate a single consistent evolutionary origin for the divergent members of these pairs. Approximately one-third of them showed phylogenies that are suggestive of horizontal gene transfer (HGT) from Sordariomycete species, and these genes are closer together in the A. oryzae genome than expected by chance, but no unique Sordariomycete donor species was identifiable. The postulated HGTs from Sordariomycetes still leave the majority of extra A. oryzae genes unaccounted for. One possible explanation for our observations is that A. oryzae might have been the recipient of many separate HGT events from diverse donors

    Function and Regulation of Vibrio campbellii Proteorhodopsin: Acquired Phototrophy in a Classical Organoheterotroph

    Get PDF
    Proteorhodopsins (PRs) are retinal-binding photoproteins that mediate light-driven proton translocation across prokaryotic cell membranes. Despite their abundance, wide distribution and contribution to the bioenergy budget of the marine photic zone, an understanding of PR function and physiological significance in situ has been hampered as the vast majority of PRs studied to date are from unculturable bacteria or culturable species that lack the tools for genetic manipulation. In this study, we describe the presence and function of a horizontally acquired PR and retinal biosynthesis gene cluster in the culturable and genetically tractable bioluminescent marine bacterium Vibrio campbellii. Pigmentation analysis, absorption spectroscopy and photoinduction assays using a heterologous over-expression system established the V. campbellii PR as a functional green light absorbing proton pump. In situ analyses comparing PR expression and function in wild type (WT) V. campbellii with an isogenic ΔpR deletion mutant revealed a marked absence of PR membrane localization, pigmentation and light-induced proton pumping in the ΔpR mutant. Comparative photoinduction assays demonstrated the distinct upregulation of pR expression in the presence of light and PR-mediated photophosphorylation in WT cells that resulted in the enhancement of cellular survival during respiratory stress. In addition, we demonstrate that the master regulator of adaptive stress response and stationary phase, RpoS1, positively regulates pR expression and PR holoprotein pigmentation. Taken together, the results demonstrate facultative phototrophy in a classical marine organoheterotrophic Vibrio species and provide a salient example of how this organism has exploited lateral gene transfer to further its adaptation to the photic zone

    Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean

    Get PDF
    As part of an ongoing survey of microbial community gene expression in the ocean, we sequenced and compared ~38 Mbp of community transcriptomes and ~157 Mbp of community genomes from four bacterioplankton samples, along a defined depth profile at Station ALOHA in North Pacific subtropical gyre (NPSG). Taxonomic analysis suggested that the samples were dominated by three taxa: Prochlorales, Consistiales and Cenarchaeales, which comprised 36–69% and 29–63% of the annotated sequences in the four DNA and four cDNA libraries, respectively. The relative abundance of these taxonomic groups was sometimes very different in the DNA and cDNA libraries, suggesting differential relative transcriptional activities per cell. For example, the 125 m sample genomic library was dominated by Pelagibacter (~36% of sequence reads), which contributed fewer sequences to the community transcriptome (~11%). Functional characterization of highly expressed genes suggested taxon-specific contributions to specific biogeochemical processes. Examples included Roseobacter relatives involved in aerobic anoxygenic phototrophy at 75 m, and an unexpected contribution of low abundance Crenarchaea to ammonia oxidation at 125 m. Read recruitment using reference microbial genomes indicated depth-specific partitioning of coexisting microbial populations, highlighted by a transcriptionally active high-light-like Prochlorococcus population in the bottom of the photic zone. Additionally, nutrient-uptake genes dominated Pelagibacter transcripts, with apparent enrichment for certain transporter types (for example, the C4-dicarboxylate transport system) over others (for example, phosphate transporters). In total, the data support the utility of coupled DNA and cDNA analyses for describing taxonomic and functional attributes of microbial communities in their natural habitats.Gordon and Betty Moore FoundationUnited States. Dept. of EnergyNational Science Foundation (U.S.) (Science and Technology Center Award EF0424599

    Structure, Function, and Evolution of the Thiomonas spp. Genome

    Get PDF
    Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live

    Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea

    Get PDF
    Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water’s chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea−Dead Sea water conduit

    The Vein Patterning 1 (VEP1) Gene Family Laterally Spread through an Ecological Network

    Get PDF
    Lateral gene transfer (LGT) is a major evolutionary mechanism in prokaryotes. Knowledge about LGT— particularly, multicellular— eukaryotes has only recently started to accumulate. A widespread assumption sees the gene as the unit of LGT, largely because little is yet known about how LGT chances are affected by structural/functional features at the subgenic level. Here we trace the evolutionary trajectory of VEin Patterning 1, a novel gene family known to be essential for plant development and defense. At the subgenic level VEP1 encodes a dinucleotide-binding Rossmann-fold domain, in common with members of the short-chain dehydrogenase/reductase (SDR) protein family. We found: i) VEP1 likely originated in an aerobic, mesophilic and chemoorganotrophic α-proteobacterium, and was laterally propagated through nets of ecological interactions, including multiple LGTs between phylogenetically distant green plant/fungi-associated bacteria, and five independent LGTs to eukaryotes. Of these latest five transfers, three are ancient LGTs, implicating an ancestral fungus, the last common ancestor of land plants and an ancestral trebouxiophyte green alga, and two are recent LGTs to modern embryophytes. ii) VEP1's rampant LGT behavior was enabled by the robustness and broad utility of the dinucleotide-binding Rossmann-fold, which provided a platform for the evolution of two unprecedented departures from the canonical SDR catalytic triad. iii) The fate of VEP1 in eukaryotes has been different in different lineages, being ubiquitous and highly conserved in land plants, whereas fungi underwent multiple losses. And iv) VEP1-harboring bacteria include non-phytopathogenic and phytopathogenic symbionts which are non-randomly distributed with respect to the type of harbored VEP1 gene. Our findings suggest that VEP1 may have been instrumental for the evolutionary transition of green plants to land, and point to a LGT-mediated ‘Trojan Horse’ mechanism for the evolution of bacterial pathogenesis against plants. VEP1 may serve as tool for revealing microbial interactions in plant/fungi-associated environments
    • …
    corecore